We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 6 covers the internal energy E, which is the first term in the free energy, F = E – TS. The internal energy originates from the quantum mechanics of chemical bonds between atoms. The bond between two atoms in a diatomic molecule is developed first to illustrate concepts of bonding, antibonding, electronegativity, covalency, and ionicity. The translational symmetry of crystals brings a new quantum number, k, for delocalized electrons. This k-vector is used to explain the concept of energy bands by extending the ideas of molecular bonding and antibonding to electron states spread over many atoms. An even simpler model of a gas of free electrons is also developed for electrons in metals. Fermi surfaces of metals are described. The strength of bonding depends on the distance between atoms. The interatomic potential of a chemical bond gives rise to elastic constants that characterize how a bulk material responds to small deformations. Chapter 6 ends with a discussion of the elastic energy generated when a particle of a new phase forms inside a parent phase, and the two phases differ in specific volume.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.