We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Incentive Spirometry is commonly used for respiratory recovery. The literature on incentive spirometry and its impact on patients with rib fracture is unclear and there are no recommendations regarding its use in the Emergency Department (ED), particularly in rib fracture patients, which are known for increasing the risk of pulmonary complication. Therefore, the objective of this study was to assess the use of incentive spirometry and to measure its impacts on delayed complications in patients discharged from the ED with confirmed rib fracture.
Methods
This is a planned sub-study of a prospective observational cohort recruited in 4 Canadians ED between November 2006 and May 2012. Non-admitted patients over 16 y.o. with at least one confirmed rib fracture on radiographs were included. Prescription of incentive spirometry was left to attending physician. Main outcomes were development of pneumonia, atelectasis, and hemothorax within 14 days. Propensity score matching analyses were performed.
Results
439 patients were included and 182 (41.5%) patients received incentive spirometry. There were 99 cases of hemothorax (22.6%), 103 cases of atelectasis (23.5%) and 4 cases of pneumonia (0.9%). The use of incentive spirometry was not protector for hemothorax [RR = 1.03 (0.66–1.64)] and atelectasis or pneumonia [RR = 1.07 (0.68–1.72)].
Conclusions
Our results suggest that unsupervised incentive spirometry use does not have a protective effect against delayed pulmonary complications after rib fracture. Further research should be conducted to assess the usefulness of incentive spirometry in specific injured population in the ED.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.