Let   $D$  be the
 $D$  be the   $n$ -dimensional Lie ball and let
 $n$ -dimensional Lie ball and let   $B\text{(S)}$  be the space of hyperfunctions on the Shilov boundary
 $B\text{(S)}$  be the space of hyperfunctions on the Shilov boundary   $S$  of
 $S$  of   $D$ . The aim of this paper is to give a necessary and sufficient condition on the generalized Poisson transform
 $D$ . The aim of this paper is to give a necessary and sufficient condition on the generalized Poisson transform   ${{P}_{l,\text{ }\!\!\lambda\!\!\text{ }}}f$  of an element
 ${{P}_{l,\text{ }\!\!\lambda\!\!\text{ }}}f$  of an element   $f$  in the space
 $f$  in the space   $B\text{(S)}$  for
 $B\text{(S)}$  for   $f$  to be in
 $f$  to be in   ${{L}^{p}}\left( S \right)$ ,
 ${{L}^{p}}\left( S \right)$ ,   $1\,<\,p\,<\,\infty $ . Namely, if
 $1\,<\,p\,<\,\infty $ . Namely, if   $F$  is the Poisson transform of some
 $F$  is the Poisson transform of some   $f\in \,B(S)$
 $f\in \,B(S)$   $F\,=\,{{P}_{l,\lambda }}f$ ), then for any
 $F\,=\,{{P}_{l,\lambda }}f$ ), then for any   $l\,\in \,Z$ ) and
 $l\,\in \,Z$ ) and   $\lambda \,\in \,C$  such that
 $\lambda \,\in \,C$  such that   $Re[\text{i}\lambda ] > \frac{n}{2}\,-\,1$ , we show that
 $Re[\text{i}\lambda ] > \frac{n}{2}\,-\,1$ , we show that   $f\,\in \,{{L}^{p}}\text{(}S\text{)}$  if and only if
 $f\,\in \,{{L}^{p}}\text{(}S\text{)}$  if and only if   $f$  satisfies the growth condition
 $f$  satisfies the growth condition
   $${{\left\| F \right\|}_{\lambda ,p}}=\underset{0\le r<1}{\mathop{\sup }}\,{{\left( 1\,-\,{{r}^{2}} \right)}^{\operatorname{Re}\left[ \text{i }\lambda \text{ } \right]-\frac{n}{2}+l}}{{\left[ \,\int_{s}{{{\left| F\left( ru \right) \right|}^{p}}du} \right]}^{\frac{1}{p}}}<\,+\infty $$
 $${{\left\| F \right\|}_{\lambda ,p}}=\underset{0\le r<1}{\mathop{\sup }}\,{{\left( 1\,-\,{{r}^{2}} \right)}^{\operatorname{Re}\left[ \text{i }\lambda \text{ } \right]-\frac{n}{2}+l}}{{\left[ \,\int_{s}{{{\left| F\left( ru \right) \right|}^{p}}du} \right]}^{\frac{1}{p}}}<\,+\infty $$