We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the $(s, C(s))$-Harnack inequality in a domain $G\subset \mathbb {R}^n$ for $s\in (0,1)$ and $C(s)\geq 1$ and present a series of inequalities related to $(s, C(s))$-Harnack functions and the Harnack metric. We also investigate the behavior of the Harnack metric under K-quasiconformal and K-quasiregular mappings, where $K\geq 1$. Finally, we provide a type of harmonic Schwarz lemma and improve the Schwarz–Pick estimate for a real-valued harmonic function.
The star function was originally developed to prove the spread theorem, a problem dealing with meromorphic functions in the complex plane. The first sections prove the spread theorem, along with other applications to the study of these functions. Later sections center on analytic functions in the unit disk. The star function technique yields to sharp estimates for integral means of univalent functions and the (harmonic) conjugate function, along with the behavior of the Green function and harmonic measure under symmetrization. The final section extends some results to domains of arbitrary connectivity. The chapter includes the necessary background in Nevanlinna theory and the Poincaré metric on hyperbolic plane domains, and in almost all cases, the mappings which exhibitextremal behavior are identified.
We show how to deform a metric of the form g = gr + dr2 to a metric = Hr + dr2, which is a hyperbolic metric for r less than some fixed λ, and coincides with g for r large. Here by hyperbolic metric we mean a metric of constant sectional curvature equal to -1. We study the extent to which is close to hyperbolic everywhere, if we assume g is close to hyperbolic. A precise definition of the close to hyperbolic concept is given. We also deal with a one-parameter version of this problem. The results in this paper are used in the problem of smoothing Charney–Davis strict hyperbolizations.
In this paper, in terms of the hyperbolic metric, we give a condition under which the image of a hyperbolic domain of an analytic function contains a round annulus centred at the origin. From this, we establish results on the multiply connected wandering domains of a meromorphic function that contain large round annuli centred at the origin. We thereby successfully extend the results of transcendental meromorphic functions with finitely many poles to those with infinitely many poles.
We prove variants of Schwarz's lemma involving monotonicity properties of condenser capacity and inner radius. Also, we examine when a similar monotonicity property holds for the hyperbolic metric.
We obtain new characterizations for Bergman spaces with standard weights in terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As a consequence, we prove optimal embedding theorems when an analytic function on the unit disk is symmetrically lifted to the bidisk.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.