Let   $X$  be an
 $X$  be an   $n$ -dimensional, finite, simply connected
 $n$ -dimensional, finite, simply connected   $\text{CW}$  complex and set
 $\text{CW}$  complex and set
   $${{\alpha }_{X}}\,=\,\underset{i}{\mathop{\lim \,\sup }}\,\frac{\log \,\text{rank}\,{{\pi }_{i}}\left( X \right)}{i}$$
 $${{\alpha }_{X}}\,=\,\underset{i}{\mathop{\lim \,\sup }}\,\frac{\log \,\text{rank}\,{{\pi }_{i}}\left( X \right)}{i}$$  
When   $0<{{\alpha }_{X}}<\infty $ , we give upper and lower bounds for
 $0<{{\alpha }_{X}}<\infty $ , we give upper and lower bounds for   $\sum\nolimits_{i=k+2}^{k+n}{\,\text{rank}}\text{ }{{\pi }_{i}}\left( X \right)$  for
 $\sum\nolimits_{i=k+2}^{k+n}{\,\text{rank}}\text{ }{{\pi }_{i}}\left( X \right)$  for   $k$  sufficiently large. We also show for any
 $k$  sufficiently large. We also show for any   $r$  that
 $r$  that   $\alpha x$  can be estimated from the integers
 $\alpha x$  can be estimated from the integers   $\text{rk }{{\pi }_{i}}\left( X \right),\,i\,\le \,nr$  with an error bound depending explicitly on
 $\text{rk }{{\pi }_{i}}\left( X \right),\,i\,\le \,nr$  with an error bound depending explicitly on   $r$ .
 $r$ .