We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Propylene oxide (PO), a commodity chemical used for making antifreeze and plastics, has long been manufactured using technologies that make co-products that influence process economics and environmental footprint. In contrast, the hydrogen peroxide propylene oxide (HPPO) process (commercialized by Dow-BASF) uses titanium silicate as a catalyst and hydrogen peroxide (H2O2) as an oxidant to selectively produce PO without a co-product. Another alternate process (CEBC-PO) uses a homogeneous methyltrioxorhenium (MTO) catalyst and H2O2 to exclusively produce PO. This chapter compares the economics and environmental footprint of three technologies for making PO: HPPO, CEBC-PO and LyondelBasell that makes tertiary butyl alcohol (TBA) as a co-product. While the HPPO and CEBC-PO processes are profitable, the profitability of the LyondellBasell process depends on the demand and value for TBA. Cradle-to-gate LCA reveals that the environmental impacts of all three processes are similar, with most of the adverse impacts caused by using fossil-based sources (natural gas and transportation fuel) for producing the raw materials (isobutane, propylene and hydrogen peroxide).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.