We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Loop quantum gravity has formalized a robust scheme in resolving classical singularities in a variety of symmetry-reduced models of gravity. In this essay, we demonstrate that the same quantum correction that is crucial for singularity resolution is also responsible for the phenomenon of signature change in these models, whereby one effectively transitions from a `fuzzy' Euclidean space to a Lorentzian space-time in deep quantum regimes. As long as one uses a quantization scheme that respects covariance, holonomy corrections from loop quantum gravity generically leads to nonsingular signature change, thereby giving an emergent notion of time in the theory. Robustness of this mechanism is established by comparison across a large class of midisuperspace models and allowing for diverse quantization ambiguities. Conceptual and mathematical consequences of such an underlying quantum-deformed spacetime are briefly discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.