We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$(M,g)$
be a closed Riemannian
$4$
-manifold and let E be a vector bundle over M with structure group G, where G is a compact Lie group. We consider a new higher order Yang–Mills–Higgs functional, in which the Higgs field is a section of
$\Omega ^0(\text {ad}E)$
. We show that, under suitable conditions, solutions to the gradient flow do not hit any finite time singularities. In the case that E is a line bundle, we are able to use a different blow-up procedure and obtain an improvement of the long-time result of Zhang [‘Gradient flows of higher order Yang–Mills–Higgs functionals’, J. Aust. Math. Soc.113 (2022), 257–287]. The proof relies on properties of the Green function, which is very different from the previous techniques.
In this paper, we define a family of functionals generalizing the Yang–Mills–Higgs functionals on a closed Riemannian manifold. Then we prove the short-time existence of the corresponding gradient flow by a gauge-fixing technique. The lack of a maximum principle for the higher order operator brings us a lot of inconvenience during the estimates for the Higgs field. We observe that the
$L^2$
-bound of the Higgs field is enough for energy estimates in four dimensions and we show that, provided the order of derivatives appearing in the higher order Yang–Mills–Higgs functionals is strictly greater than one, solutions to the gradient flow do not hit any finite-time singularities. As for the Yang–Mills–Higgs k-functional with Higgs self-interaction, we show that, provided
$\dim (M)<2(k+1)$
, for every smooth initial data the associated gradient flow admits long-time existence. The proof depends on local
$L^2$
-derivative estimates, energy estimates and blow-up analysis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.