Extreme precipitation events are projected to increase both in frequency and intensity due to climate change. High-resolution climate projections are essential to effectively model the convective phenomena responsible for severe precipitation and to plan any adaptation and mitigation action. Existing numerical methods struggle with either insufficient accuracy in capturing the evolution of convective dynamical systems, due to the low resolution, or are limited by the excessive computational demands required to achieve kilometre-scale resolution. To fill this gap, we propose a novel deep learning regional climate model (RCM) emulator called graph neural networks for climate downscaling (GNN4CD) to estimate high-resolution precipitation. The emulator is innovative in architecture and training strategy, using graph neural networks (GNNs) to learn the downscaling function through a novel hybrid imperfect framework. GNN4CD is initially trained to perform reanalysis to observation downscaling and then used for RCM emulation during the inference phase. The emulator is able to estimate precipitation at very high resolution both in space (
$ 3 $km) and time (
$ 1 $h), starting from lower-resolution atmospheric data (
$ \sim 25 $km). Leveraging the flexibility of GNNs, we tested its spatial transferability in regions unseen during training. The model trained on northern Italy effectively reproduces the precipitation distribution, seasonal diurnal cycles, and spatial patterns of extreme percentiles across all of Italy. When used as an RCM emulator for the historical, mid-century, and end-of-century time slices, GNN4CD shows the remarkable ability to capture the shifts in precipitation distribution, especially in the tail, where changes are most pronounced.