We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Thrombocytopenia occasionally occurs following the closure of some giant patent ductus arteriosus cases. Unfortunately, there is no associated research describing the associated risk factors for thrombocytopenia post-procedure.
Methods:
We reviewed all patients who received occluders with sizes ≥10/12 mm between January 2013 and June 2019. All the data and information on the characteristics of the patients and their follow-up were recorded. Univariate analysis, receiver operating characteristic curves, and linear regression were used to analyse the risk factors for thrombocytopenia and the predictors of hospitalisation stay.
Results:
Finally, 32 patients (17.5%) suffered from thrombocytopenia. Univariate analysis revealed the ratio between occluder disc size (mm) and body weight (kg) (1.71 ± 0.51 versus 1.35 ± 0.53) as an independent predictive factor for thrombocytopenia, and the area under the curve of the ratio of occluder size and body weight for predicting thrombocytopenia post-closure was 0.691 (95% confidence interval: 0.589–0.792, p = 0.001). The best cut-off value for the ratio of occluder size and weight was 1.5895, with a sensitivity and specificity of 68.8 and 66.9%, respectively. Each unit of the ratio of occluder size and body weight predicted an average hospitalisation stay of 2.856 days (95% confidence interval: 1.380–4.332). Treatment with medication did not reduce the hospitalisation stay or benefit platelet restoration.
Conclusion:
Once the ratio of occluder size and body weight is greater than 1.6, thrombocytopenia always exists. Every unit of the ratio of occluder size and body weight represents an additional 3 days of hospitalisation. Treatment does not reduce the duration of hospitalisation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.