We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, we give an upper bound for the number of elements from the interval $[1,p^{1/4\sqrt{e}+\unicode[STIX]{x1D716}}]$ necessary to generate the finite field $\mathbb{F}_{p}^{\ast }$ with $p$ an odd prime. The general result depends on the distribution of the divisors of $p-1$ and can be used to deduce results which hold for almost all primes.
This note completes the proof of the structure theorem for pp-matroid groups which was stated in our earlier paper J. Krempa and A. Stocka [‘On sets of pp-generators of finite groups’, Bull. Aust. Math. Soc.91 (2015), 241–249].
The classes of finite groups with minimal sets of generators of fixed cardinalities, named ${\mathcal{B}}$-groups, and groups with the basis property, in which every subgroup is a ${\mathcal{B}}$-group, contain only $p$-groups and some $\{p,q\}$-groups. Moreover, abelian ${\mathcal{B}}$-groups are exactly $p$-groups. If only generators of prime power orders are considered, then an analogue of property ${\mathcal{B}}$ is denoted by ${\mathcal{B}}_{pp}$ and an analogue of the basis property is called the pp-basis property. These classes are larger and contain all nilpotent groups and some cyclic $q$-extensions of $p$-groups. In this paper we characterise all finite groups with the pp-basis property as products of $p$-groups and precisely described $\{p,q\}$-groups.
In 1990, Howie and McFadden showed that every proper two-sided ideal of the full transformation monoid $T_n$, the set of all maps from an $n$-set to itself under composition, has a generating set, consisting of idempotents, that is no larger than any other generating set. This fact is a direct consequence of the same property holding in an associated finite $0$-simple semigroup. We show a correspondence between finite $0$-simple semigroups that have this property and bipartite graphs that satisfy a condition that is similar to, but slightly stronger than, Hall's condition. The results are applied in order to recover the above result for the full transformation monoid and to prove the analogous result for the proper two-sided ideals of the monoid of endomorphisms of a finite vector space.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.