We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reading difficulties (RD) frequently co-occur with attention-deficit/hyperactivity disorder (ADHD), and children with both RD + ADHD often demonstrate greater challenges in reading and executive functions (EF) than those with RD-only.
Methods:
This study examined the effect of a 4-week EF-based reading intervention on behavioral and neurobiological correlates of EF among 8–12 y.o. English-speaking children with RD + ADHD (n = 19), RD-only (n = 18), and typically developing children (n = 18). Behavioral and resting-state fMRI data were collected from all participants before and after 4 weeks of the EF-based reading computerized program. Group (RD + ADHD, RD-only, typical readers) x Test (pre- and post-intervention) repeated measures ANOVAs were conducted for reading, EF, and brain functional connectivity (FC) measures.
Results:
Across groups, reading (fluency, comprehension) and EF (inhibition, speed of processing) behavioral performance improved following the intervention. Exploratory subgroup comparisons revealed that children with RD + ADHD, but not RD-only, showed significant gains in reading comprehension, whereas inhibition improved in both RD groups, but not among typical readers. Furthermore, across groups, FC between the frontoparietal (FP) and cingulo-opercular (CO) networks decreased following the intervention. Exploratory subgroup comparisons revealed that children with RD + ADHD, but not RD-only, showed a significant decrease in FC of FP-CO and FP-dorsal attention network.
Conclusions:
These results support the differential response to an EF-based reading intervention of children with RD with and without comorbid ADHD at brain and behavioral levels.
Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia.
Methods
We initially identified gray matter alterations in 523 cHR, 855 gHR, 2162 FES, and 2640 ChS individuals relative to 6963 healthy controls. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to four specific networks.
Results
Brain structural damage networks of cHR and gHR had limited and non-overlapping spatial distributions, with the former mainly involving the frontoparietal network and the latter principally implicating the subcortical network, indicative of distinct neuropathological mechanisms underlying cHR and gHR. By contrast, brain structural damage networks of FES and ChS manifested as similar patterns of widespread brain areas predominantly involving the somatomotor, ventral attention, and subcortical networks, suggesting an emergence of more prominent brain structural abnormalities with illness onset that have trait-like stability over time.
Conclusions
Our findings may not only provide a refined picture of schizophrenia neuropathology from a network perspective, but also potentially contribute to more targeted and effective intervention strategies for individuals at different schizophrenia stages.
Reward and threat processes work together to support adaptive learning during development. Adolescence is associated with increasing approach behavior (e.g., novelty-seeking, risk-taking) but often also coincides with emerging internalizing symptoms, which are characterized by heightened avoidance behavior. Peaking engagement of the nucleus accumbens (NAcc) during adolescence, often studied in reward paradigms, may also relate to threat mechanisms of adolescent psychopathology.
Methods:
47 typically developing adolescents (9.9–22.9 years) completed an aversive learning task during functional magnetic resonance imaging, wherein visual cues were paired with an aversive sound or no sound. Task blocks involved an escapable aversively reinforced stimulus (CS+r), the same stimulus without reinforcement (CS+nr), or a stimulus that was never reinforced (CS−). Parent-reported internalizing symptoms were measured using Revised Child Anxiety and Depression Scales.
Results:
Functional connectivity between the NAcc and amygdala differentiated the stimuli, such that connectivity increased for the CS+r (p = .023) but not for the CS+nr and CS−. Adolescents with greater internalizing symptoms demonstrated greater positive functional connectivity for the CS− (p = .041).
Conclusions:
Adolescents show heightened NAcc-amygdala functional connectivity during escape from threat. Higher anxiety and depression symptoms are associated with elevated NAcc-amygdala connectivity during safety, which may reflect poor safety versus threat discrimination.
Amygdala subregion-based network dysfunction has been determined to be centrally implicated in major depressive disorder (MDD). Little is known about whether ketamine modulates amygdala subarea-related networks. We aimed to investigate the relationships between changes in the resting-state functional connectivity (RSFC) of amygdala subregions and ketamine treatment and to identify important neuroimaging predictors of treatment outcomes.
Methods
Thirty-nine MDD patients received six doses of ketamine (0.5 mg/kg). Depressive symptoms were assessed, and magnetic resonance imaging (MRI) scans were performed before and after treatment. Forty-five healthy controls underwent one MRI scan. Seed-to-voxel RSFC analyses were performed on the amygdala subregions, including the centromedial amygdala (CMA), laterobasal amygdala (LBA), and superficial amygdala subregions.
Results
Abnormal RSFC between the left LBA and the left precuneus in MDD patients is related to the therapeutic efficacy of ketamine. There were significant differences in changes in bilateral CMA RSFC with the left orbital part superior frontal gyrus and in changes in the left LBA with the right middle frontal gyrus between responders and nonresponders following ketamine treatment. Moreover, there was a difference in the RSFC of left LBA and the right superior temporal gyrus/middle temporal gyrus (STG/MTG) between responders and nonresponders at baseline, which could predict the antidepressant effect of ketamine on Day 13.
Conclusions
The mechanism by which ketamine improves depressive symptoms may be related to its regulation of RSFC in the amygdala subregion. The RSFC between the left LBA and right STG/MTG may predict the response to the antidepressant effect of ketamine.
Previous studies have suggested that the habenula (Hb) may be involved in the mechanism of obsessive-compulsive disorder (OCD). However, the specific role of Hb in OCD remains unclear. This study aimed to explore the structural and functional abnormalities of Hb in OCD and their relationship with the clinical symptoms.
Methods
Eighty patients with OCD and 85 healthy controls (HCs) were recruited as the primary dataset. The grey matter volume, resting-state functional connectivity (FC), and effective connectivity (EC) of the Hb were calculated and compared between OCD group and HCs. An independent replication dataset was used to verify the stability and robustness of the results.
Results
Patients with OCD exhibited smaller Hb volume and increased FC of right Hb-left hippocampus than HCs. Dynamic causal model revealed an increased EC from left hippocampus to right Hb and a less inhibitory causal influence from the right Hb to left hippocampus in the OCD group compared to HCs. Similar results were found in the replication dataset.
Conclusions
This study suggested that abnormal structure of Hb and hippocampus-Hb connectivity may contribute to the pathological basis of OCD.
Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs).
Methods
We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons.
Results
Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction).
Conclusion
Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.
North Korean defectors (NKDs) have often been exposed to traumatic events. However, there have been few studies of neural alterations in NKDs with post-traumatic stress disorder (PTSD) and complex PTSD (cPTSD).
Aims
To investigate neural alterations in NKDs with PTSD and cPTSD, with a specific focus on alterations in resting-state functional connectivity networks, including the default mode network (DMN).
Method
Resting-state functional connectivity was assessed using brain functional magnetic resonance imaging in three groups of NKDs: without PTSD, with PTSD and with cPTSD. Statistical tests were performed, including region of interest (ROI)-to-ROI and ROI-to-voxel analysis, followed by post hoc correlation analysis.
Results
In the ROI-to-ROI analysis, differences in functional connectivity were found among the components of the DMN, as well as in the thalamus and the basal ganglia. Right hippocampus–left pallidum and right amygdala–left lingual gyrus connectivity differed between groups in the ROI-to-voxel analysis, as did connectivity involving the basal ganglia. The post hoc analysis revealed negative correlations between Coping and Adaptation Processing Scale (CAPS) score and left posterior cingulate cortex–right pallidum connectivity and between CAPS score and right putamen–left angular gyrus connectivity in the control group, which were not observed in other groups.
Conclusions
The results suggest that there are alterations in the functional connectivity of the DMN and the limbic system in NKDs with PTSD and cPTSD, and that these alterations involve the basal ganglia. The lower correlations of CAPS score with right basal ganglia–DMN functional connectivity in patients compared with controls further implies that these connectivities are potential targets for treatment of PTSD and cPTSD.
There is growing evidence that gray matter atrophy is constrained by normal brain network (or connectome) architecture in neuropsychiatric disorders. However, whether this finding holds true in individuals with depression remains unknown. In this study, we aimed to investigate the association between gray matter atrophy and normal connectome architecture at individual level in depression.
Methods
In this study, 297 patients with depression and 256 healthy controls (HCs) from two independent Chinese dataset were included: a discovery dataset (105 never-treated first-episode patients and matched 130 HCs) and a replication dataset (106 patients and matched 126 HCs). For each patient, individualized regional atrophy was assessed using normative model and brain regions whose structural connectome profiles in HCs most resembled the atrophy patterns were identified as putative epicenters using a backfoward stepwise regression analysis.
Results
In general, the structural connectome architecture of the identified disease epicenters significantly explained 44% (±16%) variance of gray matter atrophy. While patients with depression demonstrated tremendous interindividual variations in the number and distribution of disease epicenters, several disease epicenters with higher participation coefficient than randomly selected regions, including the hippocampus, thalamus, and medial frontal gyrus were significantly shared by depression. Other brain regions with strong structural connections to the disease epicenters exhibited greater vulnerability. In addition, the association between connectome and gray matter atrophy uncovered two distinct subgroups with different ages of onset.
Conclusions
These results suggest that gray matter atrophy is constrained by structural brain connectome and elucidate the possible pathological progression in depression.
Observations from different fields of research coincide in indicating that a defective gamma-aminobutyric acid (GABA) interneuron system may be among the primary factors accounting for the varied clinical expression of schizophrenia. GABA interneuron deficiency is locally expressed in the form of neural activity desynchronization. We mapped the functional anatomy of local synchrony in the cerebral cortex in schizophrenia using functional connectivity MRI.
Methods
Data from 86 patients with schizophrenia and 137 control subjects were obtained from publicly available repositories. Resting-state functional connectivity maps based on Iso-Distant Average Correlation measures across three distances were estimated detailing the local functional structure of the cerebral cortex.
Results
Patients with schizophrenia showed weaker local functional connectivity (i.e., lower MRI signal synchrony) in (i) prefrontal lobe areas, (ii) somatosensory, auditory, visual, and motor cortices, (iii) paralimbic system at the anterior insula and anterior cingulate cortex, and (iv) hippocampus. The distribution of the defect in cortical area synchrony largely coincided with the synchronization effect of the GABA agonist alprazolam previously observed using identical functional connectivity measures. There was also a notable resemblance between the anatomy of our findings and cortical areas showing higher density of parvalbumin (prefrontal lobe and sensory cortices) and somatostatin (anterior insula and anterior cingulate cortex) GABA interneurons in humans.
Conclusions
Our results thus provide detail of the functional anatomy of synchrony changes in the cerebral cortex in schizophrenia and suggest which elements of the interneuron system are affected. Such information could ultimately be relevant in the search for specific treatments.
Higher cardiorespiratory fitness (CRF) induces neuroprotective effects in the hippocampus, a key brain region for memory and learning. We investigated the association between CRF and functional connectivity (FC) of the hippocampus in healthy young adults. We also examined the association between hippocampal FC and neurocognitive function. Lastly, we tested whether hippocampal FC mediates the association between 2-Min Walk Test (2MWT) and neurocognitive function.
Methods:
913 young adults (28.7 ± 3.7 years) from the Human Connectome Project were included in the analyses. The 2MWT performance result was used as a proxy for cardiovascular endurance. Fluid and crystalized composite neurocognitive scores were used to assess cognition. Resting-state functional MRI data were processed to measure hippocampal FC. Linear regression was used to examine the association between 2MWT, hippocampal FC, and neurocognitive outcomes after controlling for age, sex, years of education, body mass index, systolic blood pressure, and gait speed.
Results:
Better 2MWT performance was associated with greater FC between the anterior hippocampus and right posterior cingulate and left middle temporal gyrus. No associations between 2MWT and posterior hippocampal FC, whole hippocampal FC, and caudate FC (control region) were observed. Greater anterior hippocampal FC was associated with better crystalized cognition scores. Lastly, greater FC between the anterior hippocampus and right posterior cingulate mediated the association between better 2MWT scores and higher crystalized cognition scores.
Conclusions:
Anterior hippocampal FC may be one underlying neurophysiological mechanism that promotes the association between 2MWT performance and crystalized composite cognitive function in healthy young adults.
The age-related heterogeneity in major depressive disorder (MDD) has received significant attention. However, the neural mechanisms underlying such heterogeneity still need further investigation. This study aimed to explore the common and distinct functional brain abnormalities across different age groups of MDD patients from a large-sample, multicenter analysis.
Methods
The analyzed sample consisted of a total of 1238 individuals including 617 MDD patients (108 adolescents, 12–17 years old; 411 early-middle adults, 18–54 years old; and 98 late adults, > = 55 years old) and 621 demographically matched healthy controls (60 adolescents, 449 early-middle adults, and 112 late adults). MDD-related abnormalities in brain functional connectivity (FC) patterns were investigated in each age group separately and using the whole pooled sample, respectively.
Results
We found shared FC reductions among the sensorimotor, visual, and auditory networks across all three age groups of MDD patients. Furthermore, adolescent patients uniquely exhibited increased sensorimotor-subcortical FC; early-middle adult patients uniquely exhibited decreased visual-subcortical FC; and late adult patients uniquely exhibited wide FC reductions within the subcortical, default-mode, cingulo-opercular, and attention networks. Analysis of covariance models using the whole pooled sample further revealed: (1) significant main effects of age group on FCs within most brain networks, suggesting that they are decreased with aging; and (2) a significant age group × MDD diagnosis interaction on FC within the default-mode network, which may be reflective of an accelerated aging-related decline in default-mode FCs.
Conclusions
To summarize, these findings may deepen our understanding of the age-related biological and clinical heterogeneity in MDD.
Comprehensive Behavioral Intervention for Tics (CBIT) is recommended as a first-line treatment for Tourette syndrome in children and adults. While there is strong evidence proving its efficacy, the mechanisms of reduction in tic severity during CBIT are still poorly understood. In a recent study, our group identified a functional brain network involved in tic suppression in children with TS. We reasoned that voluntary tic suppression and CBIT may share some mechanisms and thus we wanted to assess whether functional connectivity during tic suppression was associated with CBIT outcome.
Methods
Thirty-two children with TS, aged 8 to 13 years old, participated in a randomized controlled trial of CBIT v. a treatment-as-usual control condition. EEG was recorded during tic suppression in all participants at baseline and endpoint. We used a source-reconstructed EEG connectivity pipeline to assess functional connectivity during tic suppression.
Results
Functional connectivity during tic suppression did not change from baseline to endpoint. However, baseline tic suppression-related functional connectivity specifically predicted the decrease in vocal tic severity from baseline to endpoint in the CBIT group. Supplementary analyses revealed that the functional connectivity between the right superior frontal gyrus and the right angular gyrus was mainly driving this effect.
Conclusions
This study revealed that functional connectivity during tic suppression at baseline predicted reduction in vocal tic severity. These results suggest probable overlap between the mechanisms of voluntary tic suppression and those of behavior therapy for tics.
There is growing evidence for the use of acceptance-commitment therapy (ACT) for the treatment of obsessive-compulsive disorder (OCD). However, few fully implemented ACT have been conducted on the neural mechanisms underlying its effect on OCD. Thus, this study aimed to elucidate the neural correlates of ACT in patients with OCD using task-based and resting-state functional magnetic resonance imaging (fMRI).
Methods
Patients with OCD were randomly assigned to the ACT (n = 21) or the wait-list control group (n = 21). An 8-week group-format ACT program was provided to the ACT group. All participants underwent an fMRI scan and psychological measurements before and after 8 weeks.
Results
Patients with OCD showed significantly increased activation in the bilateral insula and superior temporal gyri (STG), induced by the thought-action fusion task after ACT intervention. Further psycho-physiological interaction analyses with these regions as seeds revealed that the left insular–left inferior frontal gyrus (IFG) connectivity was strengthened in the ACT group after treatment. Increased resting-state functional connectivity was also found in the posterior cingulate cortex (PCC), precuneus, and lingual gyrus after ACT intervention Most of these regions showed significant correlations with ACT process measures while only the right insula was correlated with the obsessive-compulsive symptom measure.
Conclusions
These findings suggest that the therapeutic effect of ACT on OCD may involve the salience and interoception processes (i.e. insula), multisensory integration (i.e. STG), language (i.e. IFG), and self-referential processes (i.e. PCC and precuneus). These areas or their interactions could be important for understanding how ACT works psychologically.
Depressive symptoms are often comorbid with chronic pain. These conditions share aberrant emotion processing and regulation, as well as having common brain networks. However, the relationship between depressive symptoms and chronic pain and the effects on emotional brain function are unclear.
Aims
The present study aimed to disentangle the effects of chronic pain and depressive symptoms on functional connectivity between regions implicated in both these conditions.
Method
Twenty-six individuals with chronic pain (referred to as the pain group) and 32 healthy controls underwent resting-state functional magnetic resonance imaging and completed the Beck Depression Inventory. Main effects of group, depressive symptoms (total severity score) and their interaction on the functional connectivity of three seed regions (the left and right amygdalae and the medial prefrontal cortex; mPFC) with the rest of the brain were evaluated. In cases of significant interaction, moderation analyses were conducted.
Results
The group × depressive symptoms interaction was significantly associated with changes in connectivity between the right amygdala and the mPFC (family-wise error-corrected P-threshold (pFWEc = 0.008). In the moderation analysis, the pain group showed weaker connectivity between these regions at lower levels of depressive symptoms (P = 0.020), and stronger connectivity at higher levels of depressive symptoms (P = 0.003), compared with the healthy controls. In addition, the strength of connectivity decreased in the healthy controls (P = 0.005) and increased in the pain group (P = 0.014) as the severity of depressive symptoms increased.
Conclusions
Depressive symptoms moderate the impact of chronic pain on emotional brain function, with potential implications for the choice of treatment for chronic pain.
Although ketamine can rapidly decrease suicidal ideation (SI), its neurobiological mechanism of action remains unclear. Several areas of the cingulate cortex have been implicated in SI; therefore, we aimed to explore the neural correlates of the anti-suicidal effect of ketamine with cingulate cortex functional connectivity (FC) in depression.
Methods
Forty patients with unipolar or bipolar depression with SI underwent six infusions of ketamine over 2 weeks. Clinical symptoms and resting-state functional magnetic resonance imaging data were obtained at baseline and on day 13. Remitters were defined as those with complete remission of SI on day 13. Four pairs of cingulate cortex subregions were selected: the subgenual anterior cingulate cortex (sgACC), pregenual anterior cingulate cortex (pgACC), anterior mid-cingulate cortex (aMCC), and posterior mid-cingulate cortex (pMCC), and whole-brain FC for each seed region was calculated.
Results
Compared with non-remitters, remitters exhibited increased FC of the right pgACC–left middle occipital gyrus (MOG) and right aMCC–bilateral postcentral gyrus at baseline. A high area under the curve (0.91) indicated good accuracy of the combination of the above between-group differential FCs as a predictor of anti-suicidal effect. Moreover, the change of SI after ketamine infusion was positively correlated with altered right pgACC–left MOG FC in remitters (r = 0.66, p = 0.001).
Conclusions
Our findings suggest that the FC of some cingulate cortex subregions can predict the anti-suicidal effect of ketamine and that the anti-suicidal mechanism of action of ketamine may involve alteration of FC between the right pgACC and left MOG.
Late-life depression (LLD) is characterized by differences in resting state functional connectivity within and between intrinsic functional networks. This study examined whether clinical improvement to antidepressant medications is associated with pre-randomization functional connectivity in intrinsic brain networks.
Methods
Participants were 95 elders aged 60 years or older with major depressive disorder. After clinical assessments and baseline MRI, participants were randomized to escitalopram or placebo with a two-to-one allocation for 8 weeks. Non-remitting participants subsequently entered an 8-week trial of open-label bupropion. The main clinical outcome was depression severity measured by MADRS. Resting state functional connectivity was measured between a priori key seeds in the default mode (DMN), cognitive control, and limbic networks.
Results
In primary analyses of blinded data, lower post-treatment MADRS score was associated with higher resting connectivity between: (a) posterior cingulate cortex (PCC) and left medial prefrontal cortex; (b) PCC and subgenual anterior cingulate cortex (ACC); (c) right medial PFC and subgenual ACC; (d) right orbitofrontal cortex and left hippocampus. Lower post-treatment MADRS was further associated with lower connectivity between: (e) the right orbitofrontal cortex and left amygdala; and (f) left dorsolateral PFC and left dorsal ACC. Secondary analyses associated mood improvement on escitalopram with anterior DMN hub connectivity. Exploratory analyses of the bupropion open-label trial associated improvement with subgenual ACC, frontal, and amygdala connectivity.
Conclusions
Response to antidepressants in LLD is related to connectivity in the DMN, cognitive control and limbic networks. Future work should focus on clinical markers of network connectivity informing prognosis.
Building on the discussion of neuroanatomy in chapter 3, this chapter explores how the brain is wired. The first section looks at brain maps developed to clarify the relationship between structure and function in the brain and based on anatomical connectivity research. The second section introduces neurophysiological techniques, including EEG, MEG, PET, and fMRI, which allow cognitive scientists to map brain functions and connectivities. Then we discuss these techniques' temporal and spatial resolution to see their different strengths and weaknesses in cognitive neuroscience studies. In the following two sections, we look at two cases combining multiple techniques to explore the mechanism of visual attention in the brain. Finally, the last section discusses some reasons for caution when interpreting neural imaging data.
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with increased risk for poor educational attainment and compromised social integration. Currently, clinical diagnosis rarely occurs before school-age, despite behavioral signs of ADHD in very early childhood. There is no known brain biomarker for ADHD risk in children ages 2–3 years-old.
Methods
The current study aimed to investigate the functional connectivity (FC) associated with ADHD risk in 70 children aged 2.5 and 3.5 years via functional near-infrared spectroscopy (fNIRS) in bilateral frontal and parietal cortices; regions involved in attentional and goal-directed cognition. Children were instructed to passively watch videos for approximately 5 min. Risk for ADHD in each child was assessed via maternal symptoms of ADHD, and brain data was evaluated for FC.
Results
Higher risk for maternal ADHD was associated with lower FC in a left-sided parieto-frontal network. Further, the interaction between sex and risk for ADHD was significant, where FC reduction in a widespread bilateral parieto-frontal network was associated with higher risk in male, but not female, participants.
Conclusions
These findings suggest functional organization differences in the parietal–frontal network in toddlers at risk for ADHD; potentially advancing the understanding of the neural mechanisms underlying the development of ADHD.
The phenomenon of burnout generates the most interest due to relation to complete or partial disengagement of emotions, cognitive impairment, impairment of long-term and working memory. The neurophysiological mechanisms of emotional burnout remain insufficiently studied. Data related to gender specific characteristics of burnout formation are contradictory.
Objectives
To establish the gender related EEG markers of burnout was our aim.
Methods
621 volunteers (443 females) aged 18 to 24 years participated in this study. EEG was registered during the resting state (3 min, closed eyes condition). The interhemispheric and intrahemispheric average coherence across all EEG segments in all frequencies from 0.2-45 Hz was estimated. Psychological testing was performed before the registration of EEG. To determine the level of burnout formation the Boyko`s Syndrome of Emotional Burnout Inventory (SEB) was used.
Results
The Resistance phase of emotional burnout was formed in 139 women and 42 men. Development of Resistance stage in female includes formation of new intrahemispheric connections predominantly in the left frontal region (alpha1,2,3-subbands) and the midline frontal-central axis (Fz-Cz, alpha1,2 and theta2-subbands). At the same time new intrahemispheric links in men under Resistance stage development are formed mainly in the right frontal region (alpha1,2,3-subbands).
Conclusions
Connectivity patterns displayed gender-related variations that are associated with the difference in the alterations in the attention focusing, working memory, and emotional processes under burnout formation.
Cognitive control refers to our ability to regulate thoughts and actions for adaptive, goal-directed behaviors. Traditionally, cognitive control is thought to be mediated by the prefrontal cortex; however, the thalamus likely plays an important yet underappreciated role. This chapter reviews the role of the human thalamus in cognitive control. We first review anatomical, human functional neuroimaging, and human neuropsychology findings that have investigated the role of the human thalamus in two cognitive control functions: working memory and top-down biasing. To understand how the human thalamus mechanistically supports cognitive control, we then summarize operational principles of thalamocortical circuits from anatomical and neurophysiological studies. Finally, we present an overarching conceptual framework to describe how thalamocortical circuits implement different components of information processing necessary for cognitive control. In conclusion, we refute the traditional view that the thalamus passively relays signals to the cortex for purposeful processing. Instead, emerging evidence suggests that the thalamus actively modulates cortical activity and cortical network interactions to shape and coordinate information processes underlying cognitive control.