We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
T1 mapping is a recently developed imaging analysis method that allows quantitative assessment of myocardial T1 values obtained using MRI. In children, MRI is performed under free-breathing. Thus, it is important to know the changes in T1 values between free-breathing and breath-holding. This study aimed to compare the myocardial T1 mapping during breath-holding and free-breathing.
Methods:
Thirteen patients and eight healthy volunteers underwent cardiac MRI, and T1 values obtained during breath-holding and free-breathing were examined and compared. Statistical differences were determined using the paired t-test.
Results:
The mean T1 values during breath-holding were 1211.1 ± 39.0 ms, 1209.7 ± 37.4 ms, and 1228.9 ± 52.5 ms in the basal, mid, and apical regions, respectively, while the mean T1 values during free-breathing were 1165.1 ± 69.0 ms, 1103.7 ± 55.8 ms, and 1112.0 ± 81.5 ms in the basal, mid, and apical regions, respectively. The T1 values were lower during free-breathing than during breath-holding in almost all segments (basal: p = 0.008, mid: p < 0.001, apical: p < 0.001). The mean T1 values in each cross section were 3.1, 7.8, and 7.7% lower during free-breathing than during breath-holding in the basal, mid, and apical regions, respectively.
Conclusions:
We found that myocardial T1 values during free-breathing were about 3–8% lower in all cross sections than those during breath-holding. In free-breathing, it may be difficult to assess myocardial T1 values, except in the basal region, because of underestimation; thus, the findings should be interpreted with caution, especially in children.
To establish whether the use of a passive or active technique of planning target volume (PTV) definition and treatment methods for non-small cell lung cancer (NSCLC) deliver the most effective results. This literature review assesses the advantages and disadvantages in recent studies of each, while assessing the validity of the two approaches for planning and treatment.
Methods
A systematic review of literature focusing on the planning and treatment of radiation therapy to NSCLC tumours. Different approaches which have been published in recent articles are subjected to critical appraisal in order to determine their relative efficacy.
Results
Free-breathing (FB) is the optimal method to perform planning scans for patients and departments, as it involves no significant increase in cost, workload or education. Maximum intensity projection (MIP) is the fastest form of delineation, however it is noted to be less accurate than the ten-phase overlap approach for computed tomography (CT). Although gating has proven to reduce margins and facilitate sparing of organs at risk, treatment times can be longer and planning time can be as much as 15 times higher for intensity modulated radiation therapy (IMRT). This raises issues with patient comfort and stabilisation, impacting on the chance of geometric miss. Stereotactic treatments can take up to 3 hours to treat, along with increases in planning and treatment, as well as the additional hardware, software and training required.
Conclusion
Four-dimensional computed tomography (4DCT) is superior to 3DCT, with the passive FB approach for PTV delineation and treatment optimal. Departments should use a combination of MIP with visual confirmation ensuring coverage for stage 1 disease. Stages 2–3 should be delineated using ten-phases overlaid. Stereotactic and gated treatments for early stage disease should be used accordingly; FB-IMRT is optimal for latter stage disease.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.