Let
$R$ be a commutative Noetherian ring and
$\mathfrak{a}$ a proper ideal of
$R$. We show that if
$n\,:=\,\text{grad}{{\text{e}}_{R}}\,\mathfrak{a}$, then
$\text{En}{{\text{d}}_{R}}(H_{\mathfrak{a}}^{n}(R))\,\cong \,\text{Ext}_{R}^{n}(H_{\mathfrak{a}}^{n}(R),\,R)$. We also prove that, for a nonnegative integer
$n$ such that
$H_{\mathfrak{a}}^{i}(R)\,=\,0$ for every
$i\,\ne \,n$, if
$\text{Ext}_{R}^{i}({{R}_{z}},\,R)\,=\,0$ for all
$i\,>\,0$ and
$z\,\in \,\mathfrak{a}$, then
$\text{En}{{\text{d}}_{R}}(H_{\mathfrak{a}}^{n}(R))$ is a homomorphic image of
$R$, where
${{R}_{z}}$ is the ring of fractions of
$R$ with respect to a multiplicatively closed subset
$\{{{z}^{j}}|j\,\ge \text{0}\}$ of
$R$. Moreover, if
$\text{Ho}{{\text{m}}_{R}}({{R}_{z}},R)=0$ for all
$z\,\in \,\mathfrak{a}$, then
${{\mu }_{H_{\mathfrak{a}}^{n}(R)}}$ is an isomorphism, where
${{\mu }_{H_{\mathfrak{a}}^{n}(R)}}$ is the canonical ring homomorphism
$R\,\to \,\text{En}{{\text{d}}_{R}}(H_{\mathfrak{a}}^{n}(R))$.