In this paper, we consider the Cauchy problem
\left\{ \begin{align}
& {{u}_{t}}=\Delta ({{u}^{m}}),\,\,\,\,\,x\in {{\mathbb{R}}^{N}},t>0,N\ge 3, \\
& u(x,0)={{u}_{0}}(x),\,\,\,\,\,x\in {{\mathbb{R}}^{N}}. \\
\end{align} \right.We will prove that
(i) for
{{m}_{c}}\,<\,m,\,{{m}_{0}}\,<\,1,\,\left| u(x,\,t,m)-u(x,\,t,{{m}_{0}}) \right|\,\to \,0 as
m\,\to \,{{m}_{0}} uniformly on every compact subset of
{{\mathbb{R}}^{N}}\,\times \,{{\mathbb{R}}^{+}}, where
{{m}_{c}}\,=\,\frac{{{(N-2)}_{+}}}{N};
(ii) there is a
{{C}^{*}} that explicitly depends on
m such that
{{\left\| u(\cdot ,\cdot ,m)-u(\cdot ,\cdot ,1) \right\|}_{{{L}^{2}}({{\mathbb{R}}^{N}}\times {{\mathbb{R}}^{+}})}}\le {{C}^{*}}\left| m-1 \right|.