An a priori Campanato type regularity condition is established for a class of W1X local minimisers \overline{u}
of the general variational integral \int_{\Omega} F(\nabla u(x))\,{\rm d}x
where \Omega \subset \mathbb{R}^n
is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition F(\xi)\leq c(1+|\xi|^p)
for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space \mathcal{L}^{p,\mu} (\Omega,\mathbb{R}^{N\times n})
, µ < n, Campanato space \mathcal{L}^{p,n}(\Omega,\mathbb{R}^{N\times n})
and the space of bounded mean oscillation {\rm BMO}\Omega,\mathbb{R}^{N\times n})
. The admissible maps u\colon \Omega \to \mathbb{R}^N
are of Sobolev class W1,p , satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.