We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For an equivariant commutative ring spectrum R, ?0R has algebraic structure reflecting the presence of both additive transfers and multiplicative norms. The additive structure gives rise to a Mackey functor and the multiplicative structure yields the additional structure of a Tambara functor. If R is an N? ring spectrum in the category of genuine G-spectra, then all possible additive transfers are present and ?0R has the structure of an incomplete Tambara functor. However, if R is an N? ring spectrum in a category of incomplete G-spectra, the situation is more subtle. In this chapter, we study the algebraic theory of Tambara structures on incomplete Mackey functors, which we call bi-incomplete Tambara functors. Just as incomplete Tambara functors have compatibility conditions that control which systems of norms are possible, bi-incomplete Tambara functors have algebraic constraints arising from the possible interactions of transfers and norms. We give a complete description of the possible interactions between the additive and multiplicative structures.
For an equivariant commutative ring spectrum R, ?0R has algebraic structure reflecting the presence of both additive transfers and multiplicative norms. The additive structure gives rise to a Mackey functor and the multiplicative structure yields the additional structure of a Tambara functor. If R is an N? ring spectrum in the category of genuine G-spectra, then all possible additive transfers are present and ?0R has the structure of an incomplete Tambara functor. However, if R is an N? ring spectrum in a category of incomplete G-spectra, the situation is more subtle. In this chapter, we study the algebraic theory of Tambara structures on incomplete Mackey functors, which we call bi-incomplete Tambara functors. Just as incomplete Tambara functors have compatibility conditions that control which systems of norms are possible, bi-incomplete Tambara functors have algebraic constraints arising from the possible interactions of transfers and norms. We give a complete description of the possible interactions between the additive and multiplicative structures.
We study the Balmer spectrum of the category of finite $G$-spectra for a compact Lie group $G$, extending the work for finite $G$ by Strickland, Balmer–Sanders, Barthel–Hausmann–Naumann–Nikolaus–Noel–Stapleton and others. We give a description of the underlying set of the spectrum and show that the Balmer topology is completely determined by the inclusions between the prime ideals and the topology on the space of closed subgroups of $G$. Using this, we obtain a complete description of this topology for all abelian compact Lie groups and consequently a complete classification of thick tensor ideals. For general compact Lie groups we obtain such a classification away from a finite set of primes $p$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.