We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce the
$\Sigma _1$
-definable universal finite sequence and prove that it exhibits the universal extension property amongst the countable models of set theory under end-extension. That is, (i) the sequence is
$\Sigma _1$
-definable and provably finite; (ii) the sequence is empty in transitive models; and (iii) if M is a countable model of set theory in which the sequence is s and t is any finite extension of s in this model, then there is an end-extension of M to a model in which the sequence is t. Our proof method grows out of a new infinitary-logic-free proof of the Barwise extension theorem, by which any countable model of set theory is end-extended to a model of
$V=L$
or indeed any theory true in a suitable submodel of the original model. The main theorem settles the modal logic of end-extensional potentialism, showing that the potentialist validities of the models of set theory under end-extensions are exactly the assertions of S4. Finally, we introduce the end-extensional maximality principle, which asserts that every possibly necessary sentence is already true, and show that every countable model extends to a model satisfying it.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.