We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Neuroimaging measures of behavioral and emotional dysregulation can yield biomarkers denoting developmental trajectories of psychiatric pathology in youth. We aimed to identify functional abnormalities in emotion regulation (ER) neural circuitry associated with different behavioral and emotional dysregulation trajectories using latent class growth analysis (LCGA) and neuroimaging.
Method
A total of 61 youth (9–17 years) from the Longitudinal Assessment of Manic Symptoms study, and 24 healthy control youth, completed an emotional face n-back ER task during scanning. LCGA was performed on 12 biannual reports completed over 5 years of the Parent General Behavior Inventory 10-Item Mania Scale (PGBI-10M), a parental report of the child's difficulty regulating positive mood and energy.
Results
There were two latent classes of PGBI-10M trajectories: high and decreasing (HighD; n = 22) and low and decreasing (LowD; n = 39) course of behavioral and emotional dysregulation over the 12 time points. Task performance was >89% in all youth, but more accurate in healthy controls and LowD versus HighD (p < 0.001). During ER, LowD had greater activity than HighD and healthy controls in the dorsolateral prefrontal cortex, a key ER region, and greater functional connectivity than HighD between the amygdala and ventrolateral prefrontal cortex (p's < 0.001, corrected).
Conclusions
Patterns of function in lateral prefrontal cortical–amygdala circuitry in youth denote the severity of the developmental trajectory of behavioral and emotional dysregulation over time, and may be biological targets to guide differential treatment and novel treatment development for different levels of behavioral and emotional dysregulation in youth.
Depression in the context of bipolar disorder (BDd) is often misdiagnosed as unipolar disorder depression (UDd) leading to poor clinical outcomes for many bipolar sufferers. We examined neural circuitry supporting emotion regulation in females with either BDd or UDd as a first stage toward identifying biomarkers that may differentiate BDd from UDd.
Method
Fifty-seven females aged 18–45 years participated in this study: 23 with UDd, 18 with bipolar disorder type I depression (BDId) and 16 healthy females. During 3-T functional magnetic resonance imaging (fMRI), the participants performed an emotional face n-back (EFNBACK) task, that is an n-back task with high (2-back) and low (0-back) memory load conditions flanked by two positive, negative or neutral face distracters. This paradigm examines executive control with emotional distracters–emotion regulation.
Results
High memory load with neutral face distracters elicited greater bilateral and left dorsal anterior midcingulate cortex (dAMCC) activity in UDd than in healthy and BDId females respectively, and greater bilateral putamen activity in both depressed groups versus healthy females. High memory load with happy face distracters elicited greater left putamen activity in UDd than in healthy females. Psychotropic medication was associated with greater putamen activity to these contrasts in UDd females.
Conclusions
During high memory load with neutral face distracters, elevated dAMCC activity in UDd suggests abnormal recruitment of attentional control circuitry to maintain task performance, whereas elevated putamen activity unrelated to psychotropic medication in BDId females may suggest an attentional bias toward ambiguous neutral face distracters. Differential patterns of functional abnormalities in neural circuitry supporting attentional control during emotion regulation, especially in the dAMCC, is a promising neuroimaging measure to distinguish UDd from BDId in females.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.