We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the impact of couch translational shifts on dose–volume histogram (DVH) and radiobiological parameters [tumour control probability (TCP), equivalent uniform dose (EUD) and normal tissue complication probability (NTCP)] of volumetric modulated arc therapy (VMAT) plans and to develop a simple and swift method to predict the same online, on a daily basis.
Methods
In total, ten prostate patients treated with VMAT technology were selected for this study. The plans were generated using Eclipse TPS and delivered using Clinac ix LINAC equipped with a Millennium 120 multileaf collimator. In order to find the effect of systematic translational couch shifts on the DVH and radiobiological parameters, errors were introduced in the clinically accepted base plan with an increment of 1 mm and up to 5 mm from the iso-centre in both positive and negative directions of each of the three axis, x [right–left (R-L)], y [superior–inferior (S-I)] and z [anterior–posterior (A-P)]. The percentages of difference in these parameters (∆D, ∆TCP, ∆EUD and ∆NTCP) were analyzed between the base plan and the error introduced plans. DVHs of the base plan and the error plans were imported into the MATLAB software (R2013a) and an in-house MATLAB code was generated to find the best curve fitted polynomial functions for each point on the DVH, there by generating predicted DVH for planning target volume (PTV), clinical target volume (CTV) and organs at risks (OARs). Functions f(x, vj), f(y, vj) and f(z, vj) were found to represent the variation in the dose when there are couch translation shifts in R-L, S-I and A-P directions, respectively. The validation of this method was done by introducing daily couch shifts and comparing the treatment planning system (TPS) generated DVHs and radiobiological parameters with MATLAB code predicted parameters.
Results
It was noted that the variations in the dose to the CTV, due to both systematic and random shifts, were very small. For CTV and PTV, the maximum variations in both DVH and radiobiological parameters were observed in the S-I direction than in the A-P or R-L directions. ∆V70 Gy and ∆V60 Gy of the bladder varied more due to S-I shift whereas, ∆V40 Gy, ∆EUD and ∆NTCP varied due to A-P shifts. All the parameters in rectum were most affected by the A-P shifts than the shifts in other two directions. The maximum percentage of deviation between the TPS calculated and MATLAB predicted DVHs of plans were calculated for targets and OARs and were found to be less than 0·5%.
Conclusion
The variations in the parameters depend upon the direction and magnitude of the shift. The DVH curves generated by the TPS and predicted by the MATLAB showed good correlation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.