We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the sum of the parts in all the partitions of n into distinct parts and give two infinite families of linear inequalities involving this sum. The results can be seen as new connections between partitions and divisors.
We determine, up to multiplicative constants, the number of integers $n\leq x$ that have a divisor in $(y,2y]$ and no prime factor $\leq w$. Our estimate is uniform in $x,y,w$. We apply this to determine the order of the number of distinct integers in the $N\times N$ multiplication table, which are free of prime factors $\leq w$, and the number of distinct fractions of the form $(a_{1}a_{2})/(b_{1}b_{2})$ with $1\leq a_{1}\leq b_{1}\leq N$ and $1\leq a_{2}\leq b_{2}\leq N$.
For natural integer n, let Dn denote the random variable taking the values log d for d dividing n with uniform probability 1/τ(n). Then t↦ℙ(Dn≤nt) (0≤t≤1) is an arithmetic process with respect to the uniform probability over the first N integers. It is known from previous works that this process converges to a limit law and that the same holds for various extensions. We investigate the generalized moments of arbitrary orders for the limit laws. We also evaluate the mean value of the two-dimensional distribution function ℙ(Dn≤nu, D{n/Dn}≤nv).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.