We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mass-casualty incidents (MCIs) and disasters are characterized by a high heterogeneity of effects and may pose important logistic challenges that could hamper the emergency rescue operations.
The main objective of this study was to establish the most frequent logistic challenges (red flags) observed in a series of Italian disasters with a problem-based approach and to verify if the 80-20 rule of the Pareto principle is respected.
Methods:
A series of 138 major events from 1944 through 2020 with a Disaster Severity Score (DSS) ≥ four and five or more victims were analyzed for the presence of twelve pre-determined red flags.
A Pareto graph was built considering the most frequently observed red flags, and eventual correlations between the number of red flags and the components of the DSS were investigated.
Results:
Eight out of twelve red flags covered 80% of the events, therefore not respecting the 80-20 rule; the number of red flags showed a low positive correlation with most of the components of the DSS score. The Pareto analysis showed that potential hazards, casualty nest area > 2.5km2, number of victims over 50, evacuation noria over 20km, number of nests > five, need for extrication, complex access to victims, and complex nest development were the most frequently observed red flags.
Conclusions:
Logistic problems observed in MCIs and disaster scenarios do not follow the 80-20 Pareto rule; this demands for careful and early evaluation of different logistic red flags to appropriately tailor the rescue response.
The Richter Scale measures the magnitude of a seismic occurrence, but it does not feasibly quantify the magnitude of the “disaster” at the point of impact in real humanitarian needs, based on United Nations International Strategy for Disaster Reduction (UNISDR; Geneva, Switzerland) 2009 Disaster Terminology. A Disaster Severity Index (DSI) similar to the Richter Scale and the Mercalli Scale has been formulated; this will quantify needs, holistically and objectively, in the hands of any stakeholders and even across timelines.
Background
An agreed terminology in quantifying “disaster” matters; inconsistency in measuring it by stakeholders posed a challenge globally in formulating legislation and policies responding to it.
Methods
A quantitative, mathematical calculation which uses the median score percentage of 100% as a baseline, indicating the ability to cope within the local capacity, was used. Seventeen indicators were selected based on the UNISDR 2009 disaster definition of vulnerability and exposure and holistic approach as a pre-condition. The severity of the disaster is defined as the level of unmet needs. Thirty natural disasters were tested, retrospectively, and non-parametric tests were used to test the correlation of the DSI score against the indicators.
Results
The findings showed that 20 out of 30 natural disasters tested fulfilled the inability to cope, within local capacity in disaster terminology. Non-parametric tests showed that there was a correlation between the 30 DSI scored and the indicators.
Conclusion
By computing a median fit percentage score of 100% as the ability to cope, and the correlation of the 17 indicators, in this DSI Scale, 20 natural disasters fitted into the disaster definition. This DSI will enable humanitarian stakeholders to measure and compare the severity of the disaster objectively, as well as enable future response to be based on needs.
YewYY, Castro DelgadoR, HeslopDJ, Arcos GonzálezP. The Yew Disaster Severity Index: A New Tool in Disaster Metrics. Prehosp Disaster Med. 2019;34(1):8–19.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.