We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Myrmekites occurring in monzodiorite from the Meichuan pluton in the Dabie ultrahigh-pressure metamorphic belt were investigated. The petrographic evidence demonstrates a metasomatic origin for myrmekite formation at the scale of individual alkali feldspar grains, and that the myrmekitic quartz and plagioclase matrix are generated simultaneously replacing precursor feldspar. Energy-dispersive X-ray spectroscopy and electron microprobe analysis indicate a low anorthite content in the narrow rim of host plagioclase near the myrmekite–alkali-feldspar interface. The Ca2+, Na+ proportion of hydrothermal fluids replacing precursor alkali feldspar is 1:5.4, calculated from the anorthite content of the inner part of the host plagioclase and the neighbouring alkali feldspar. Electron back-scattered diffraction was used to identify the crystallographic orientation of the myrmekitic quartz, plagioclase matrix and the precursor alkali feldspar. The crystallographic orientation relationships (110)Kfs//(11$\bar{2}\bar{1}$)Qtz, (20$\bar{1}$)Kfs//(11$\bar{2}$1)Qtz and [11$\bar{2}3]$Qtz//[001]Kfs between myrmekitic quartz and adjacent alkali feldspar were obtained from statistical analysis. No clear crystallographic orientation relationship between quartz and plagioclase was found. The growth of myrmekitic quartz is constrained by the precursor alkali feldspar rather than the simultaneously crystallised plagioclase. This research is helpful for understanding the intergrowth mechanism during metasomatism.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.