We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The profit-maximisation problem (for production of one good) is introduced as motivation for the development of general optimisation techniques. The general concept of a critical (or stationary) point is presented, together with the method for finding such points and classifying their nature in two different ways: by examining the sign of the derivative around the point and by using the second-derivative test. Optimisation on intervals and infinite intervals is then discussed (where the end-points must be taken into consideration). Additional economic and financial applications are given.
We establish gradient estimates for solutions to the Dirichlet problem for the constant mean curvature equation in hyperbolic space. We obtain these estimates on bounded strictly convex domains by using the maximum principles theory of Φ-functions of Payne and Philippin. These estimates are then employed to solve the Dirichlet problem when the mean curvature H satisfies H < 1 under suitable boundary conditions.
In this paper, we study a class of Brezis–Nirenberg problems for nonlocal systems, involving the fractional Laplacian $(-\unicode[STIX]{x1D6E5})^{s}$ operator, for $0<s<1$, posed on settings in which Sobolev trace embedding is noncompact. We prove the existence of infinitely many solutions in large dimension, namely when $N>6s$, by employing critical point theory and concentration estimates.
In this paper the existence of infinitely many solutions for a class of Kirchhoff-type problems involving the p-Laplacian, with p > 1, is established. By using variational methods, we determine unbounded real intervals of parameters such that the problems treated admit either an unbounded sequence of weak solutions, provided that the nonlinearity has a suitable behaviour at ∞, or a pairwise distinct sequence of weak solutions that strongly converges to 0 if a similar behaviour occurs at 0. Some comparisons with several results in the literature are pointed out. The last part of the work is devoted to the autonomous elliptic Dirichlet problem.
L’assemblage de certaines pièces métalliques qu’on peut rencontrer dans l’industrie(nucléaire, spatiale, ...), engendre souvent un chemin de fuite qui peut laisser passer unfluide. L’étude suivante a pour objet la compréhension de la phénoménologie d’unécoulement confiné traversant le voisinage du point critique et son influence sur le débitde fuite. Ce problème d’étanchéité a été limité aux situations stationnaires etvisqueuses. Le chemin de filtration a été assimilé à un capillaire dont la paroi estmaintenue à la température critique. Une différence de pression a été imposée entre uneentrée supercritique et une sortie subcritique. L’approche phénoménologique a permis demettre en évidence la présence d’une zone de transition au passage du point critique. Danscette région de forte dilatation on a montré l’existence d’un couplage thermo-dynamique etle rôle joué par la convection thermique qui associe la conduction pour assurer letransport de chaleur. On montre que la progression du fluide vers l’extérieur est ralentiepar un effet bouchon.
We consider semilinear elliptic problems in which the right-hand-side nonlinearity depends on a parameter λ > 0. Two multiplicity results are presented, guaranteeing the existence of at least three non-trivial solutions for this kind of problem, when the parameter λ belongs to an interval (0,λ*). Our approach is based on variational techniques, truncation methods and critical groups. The first result incorporates as a special case problems with concave–convex nonlinearities, while the second one involves concave nonlinearities perturbed by an asymptotically linear nonlinearity at infinity.
La crise d'ébullition est une transition entre deux régimes d'ébullition :ébullition nucléée (la bulle se forme sur la surface chauffante) et ébullition en film (la surface chauffanteest couverte par un film continu de vapeur séparant la surface chauffante du liquide). Dans cettecommunication, nous présentons un modèle physique de la crise d'ébullition basé sur le concept de recul devapeur. Nos simulations numériques de croissance thermiquement contrôlée montrent comment une bulle attachéeà la surface chauffante commence soudainement à s'y étaler, formant le germe d'un film de vapeur. La force derecul de vapeur ne provoque pas seulement l'étalement de la bulle, elle crée également une forceadditionnelle d'adhérence qui empêche le départ de la bulle de la surface chauffante lors de sa croissance.Près du point critique liquide-vapeur, la croissance de la bulle est très lente. Si, de plus, des conditionsde microgravité sont remplies, la bulle garde la forme convexe et il est possible d'observerexpérimentalement une augmentation de l'angle apparent de contact ainsi que la croissance de la tache sèche.Ces observations confirment l'explication proposée.
A class of non-linear stochastic models is introduced. Phase transitions, critical points and the domain of attraction are discussed in detail for some concrete examples. For one of the examples the explicit expression for the domain of attraction and the rates of convergence are obtained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.