To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Craniospinal irradiation is a technique indicated when a patient has a malignancy that has either disseminated, or is at risk of disseminating, throughout the subarachnoid space. While the craniospinal axis is treatable with conventional radiotherapy, the high doses to organs at risk carry an increased risk of acute and late side effects. Proton craniospinal irradiation is an expensive technique that shows great theoretical promise arising from reduced exit doses. The purpose of this systematic review is to determine the potential role of proton therapy as a standard modality for craniospinal irradiation.
Materials and methods
A literature review was performed to determine the efficacy and cost of proton craniospinal irradiation. The Cochrane Library and the Inspec, Medline (via Pubmed) and Scopus databases were searched. After exclusion criteria were applied, the remaining papers were systematically appraised utilising the Scottish Intercollegiate Guidelines Network critical appraisal checklists.
Results
A total of 14 articles remained following the application of the screening and critical appraisal processes. In total, five of the articles concluded that the risk of secondary malignancy was lower with proton therapy, while ten of the articles included data showing that toxicity rates and organs at risk doses were lower with proton therapy. Doses to most thoracic and abdominal organs at risk analysed in the literature were reduced when proton therapy was used, with the sole exception of the oesophagus, the dose to which depended on whether or not the entire vertebral body was treated. Proton therapy also delivered optimal doses to organs at risk in the head and neck compared with conformal radiation therapy. However, in one study that compared tomotherapy to proton therapy, tomotherapy outperformed proton therapy by delivering lower doses to organs at risk in the head and neck, as well as the kidneys. The two cost-effectiveness studies did not indicate proton therapy as an optimal modality for all treatment sites; however, one of the studies found that for medulloblastoma, protons were more cost effective than conventional radiation therapy.
Findings
Proton therapy is a superior treatment option for craniospinal irradiation. The reduction in risk of toxicity and radiocarcinogenesis offered by proton craniospinal irradiation appear to outweigh the increased costs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.