When overdispersion and correlation co-occur in longitudinal count data, as is often the case, an analysis method that can handle both phenomena simultaneously is needed. The correlated Poisson distribution (CPD) proposed by Drezner and Farnum (Communications in Statistics-Theory and Methods, 22(11), 3051–3063, 1994) is a generalization of the classical Poisson distribution with the incorporation of an additional parameter that allows dependence between successive observations of the phenomenon under study. This parameter both measures the correlation and reflects the degree of dispersion. The classical Poisson distribution is obtained as a special case when the correlation is zero. We present an in-depth review of this CPD and discuss some methods to estimate the distribution parameters. The inclusion of regression components in this distribution is enabled by allowing one of the parameters to include available information concerning, in this case, automobile insurance policyholders. The proposed distribution can be viewed as an alternative to the Poisson, negative binomial, and Poisson-inverse Gaussian approaches. We then describe applications of the distribution, suggest it is appropriate for modeling the number of claims in an automobile insurance portfolio, and establish some new distribution properties.