To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The automorphism group is one of the most natural groups that acts on polytopes, since it captures its level of symmetry. The connection group is another group that acts naturally on the flags of a polytope; it can be interpreted as a recipe to recover the structure of the polytope from its flags. The chirality index is a measure of how far a chiral polytope is from being regular, and it is linked to a group called the chirality group. This chapter addresses these three groups and their interactions.
Abstract polytopes are partially ordered sets that satisfy some key aspects of the face lattices of convex polytopes. They are chiral if they have maximal symmetry by combinatorial rotations, but none by combinatorial reflections. Aimed at graduate students and researchers in combinatorics, group theory or Euclidean geometry, this text gives a self-contained introduction to abstract polytopes and specialises in chiral abstract polytopes. The first three chapters are introductory and mostly contain basic concepts and results. The fourth chapter talks about ways to obtain chiral abstract polytopes from other abstract polytopes, while the fifth discusses families of chiral polytopes grouped by common properties such as their rank, their small size or their geometric origin. Finally, the last chapter relates chiral polytopes with geometric objects in Euclidean spaces. This material is complemented by a number of examples, exercises and figures, and a list of 75 open problems to inspire further research.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.