We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The field of flat-foldable origami is introduced, which involves a mix of geometry and combinantorics.This chapter focuses on local properties of flat origami, meaning the study of how and when a single vertex in an origami crease pattern will be able to fold flat.The classic theorems of Kawasaki and Maekawa are proved and generalizations are made to folding vertices on cone-shaped (i.e., non-developable) paper.The problem of counting valid mountain-valley assignments of flat-foldable vertices is solved, and the configuration space of flat-foldable vertices of a fixed degree is characterized.A matrix model for formalizing flat-vertex folds is introduced, and the chapter ends with historical notes on this topic.
The final chapter considers more theoretical aspects of rigid origami.The first section outlines a proof that deciding whether or not an origami crease pattern can be rigidly folded from the unfolded state using some subset of the creases is NP-hard.Then configuration spaces of rigid origami crease patterns are discussed in more depth than in the previous chapter, including a proof that the germ of single-vertex rigid origami configuration spaces is isomorphic to the germ of a quadratic form.Examples of disconnected rigid origami configuration spaces are also included.The chapter, and book, ends with an introduction to the theory of self-folding, where we imagine that a crease pattern is rigidly folded using actuators on the creases, and we wish for these actuators to fold the crease pattern to a target state and not to some other rigid origami state.The aim is to characterize when simple actuating forces can do this, and we present the current theory behind this as well as its limitations.
This chapter takes the concept of rigid origami and puts it in motion, studying how a crease pattern flexes from the unfolded state to a continuum of rigid origami states.The treatment presented starts with the more general theory of flexible polyhedral surfaces, then moves to the special case of origami.The configuration space of the rigid foldings of a crease pattern is introduced, and the tools of reciprocal-parallel and reciprocal diagrams are used to establish conditions for infinitesimal and second-order rigid foldability.This is used to prove that a single-vertex origami crease pattern has a rigid folding from the unfolded state if and only if it has a nontrivial zero-area reciprocal diagram.These results are then used to establish equations for the folding angles of a degree-4 flat-foldable vertex that are linear when parameterized by the tangent of half the folding angles, also known as the Weierstrass transformation.An intrinsic condition for an origami vertex crease pattern to be rigidly foldable from the unfolded state is also given.
In robotics, a topological theory of motion planning was initiated by M. Farber. We present optimal motion planning algorithms which can be used in designing practical systems controlling objects moving in Euclidean space without collisions between them and avoiding obstacles. Furthermore, we present the multi-tasking version of the algorithms.
Let $X$ be a topological space. We consider certain generalized configuration spaces of points on $X$, obtained from the cartesian product $X^{n}$ by removing some intersections of diagonals. We give a systematic framework for studying the cohomology of such spaces using what we call ‘twisted commutative dg algebra models’ for the cochains on $X$. Suppose that $X$ is a ‘nice’ topological space, $R$ is any commutative ring, $H_{c}^{\bullet }(X,R)\rightarrow H^{\bullet }(X,R)$ is the zero map, and that $H_{c}^{\bullet }(X,R)$ is a projective $R$-module. We prove that the compact support cohomology of any generalized configuration space of points on $X$ depends only on the graded $R$-module $H_{c}^{\bullet }(X,R)$. This generalizes a theorem of Arabia.
The Lusternik–Schnirelmann category cat and topological complexity TC are related homotopy invariants. The topological complexity TC has applications to the robot motion planning problem. We calculate the Lusternik–Schnirelmann category and topological complexity of the ordered configuration space of two distinct points in the product $G\times \mathbb{R}^{n}$ and apply the results to the planar and spatial motion of two rigid bodies in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$ respectively.
We associate a Taylor tower supplied by the calculus of the embedding functor to the space of long knots and study its cohomology spectral sequence. The combinatorics of the spectral sequence along the line of total degree zero leads to chord diagrams with relations as in finite type knot theory. We show that the spectral sequence collapses along this line and that the Taylor tower represents a universal finite type knot invariant.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.