To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The spin-flip of the ground-state electron in neutral hydrogen, known as hyperfine structure, gives rise to the famous 21-cm line in the radio band. The 21-cm line informs us about the “cold” phase of atomic hydrogen in the Universe. In this chapter, we present the basic physics of the 21-cm spin flip and then discuss several surveys of 21-cm absorption and their reported findings. These include blind surveys, galaxy-selected surveys, metal-line selected surveys, and DLA-selected surveys. An exciting measurement known as redshift drift, which would provide a direct measurement of the change in the expansion rate of the Universe, is expected to be highly precise using 21-cm observations. During the Epoch of Reionization, a 21-cm forest, analogous to the Ly α forest, is expected. In fact, this absorption line is expected to trace all the way back to the Dark Ages of the universe and yield empirical insights into the formation of the first stars and black holes.
The cold neutral medium (CNM) represents gas at temperature T ∼ 80 K and number density n ∼ 40 cm-−3, where heating by photoelectrons ejected from dust grains balances cooling by fine-structure line emission from C+. The cold neutral medium is studied by looking at the absorption lines caused by the CNM along the line of sight to bright background stars. Interpreting these absorption lines requires solving the equation of radiative transfer. In particular, the curve of growth for an absorption line yields the relation between the observed equivalent width of a line and the underlying column density of the atom or ion giving rise to the absorption.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.