We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article studies the dynamical behaviour of classical solutions of a hyperbolic system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, with time-dependent boundary conditions. It is shown that under suitable assumptions on the boundary data, solutions starting in the $H^2$-space exist globally in time and the differences between the solutions and their corresponding boundary data converge to zero as time goes to infinity. There is no smallness restriction on the magnitude of the initial perturbations. Moreover, numerical simulations show that the assumptions on the boundary data are necessary for the above-mentioned results to hold true. In addition, numerical results indicate that the solutions converge asymptotically to time-periodic states if the boundary data are time-periodic.
This paper focuses on the Cauchy problem for a one-dimensional quasilinear hyperbolic–parabolic coupled system with initial data given on a line of parabolicity. The coupled system is derived from the Poiseuille flow of full Ericksen–Leslie model in the theory of nematic liquid crystals, which incorporates the crystal and liquid properties of the materials. The main difficulty comes from the degeneracy of the hyperbolic equation, which makes that the system is not continuously differentiable and then the classical methods for the strictly hyperbolic–parabolic coupled systems are invalid. With a choice of a suitable space for the unknown variable of the parabolic equation, we first solve the degenerate hyperbolic problem in a partial hodograph plane and express the smooth solution in terms of the original variables. Based on the smooth solution of the hyperbolic equation, we then construct an iterative sequence for the unknown variable of the parabolic equation by the fundamental solution of the heat equation. Finally, we verify the uniform convergence of the iterative sequence in the selected function space and establish the local existence and uniqueness of classical solutions to the degenerate coupled problem.
We study the local and global existence and uniqueness of mild solution for a general class of abstract differential equations with state-dependent argument. In the last section, some examples on partial differential equations with state-dependent argument are presented.
This chapter presents all the needed theoretical background regarding the initial value problem for a first order ordinary differential equation in finite dimensions. Local and global existence, uniqueness, and continuous dependence on data are presented. The discussion then turns to stability of solutions. We discuss the flow map and the Alekseev-Grobner Lemma. Dissipative equations. and a discussion of Lyapunov stability of fixed points conclude the chapter.
We consider the coupled chemotaxis-fluid model for periodic pattern formation on two- and three-dimensional domains with mixed nonhomogeneous boundary value conditions, and prove the existence of nontrivial time periodic solutions. It is worth noticing that this system admits more than one periodic solution. In fact, it is not difficult to verify that (0, c, 0, 0) is a time periodic solution. Our purpose is to obtain a time periodic solution with nonconstant bacterial density.
In this paper we consider a two-phase model describing the growth of avascular solid tumors when taking into account the effects of cell-to-cell adhesion and taxis due to nutrient. The tumor is surrounded by healthy tissue which is the source of nutrient for tumor cells. In a three-dimensional context, we prove that the mathematical formulation corresponds to a well-posed problem, and find radially symmetric steady-state solutions of the problem. They appear in the regime where the rate of cell apoptosis to cell proliferation is less than the far field nutrient concentration. Furthermore, we study the stability properties of those radially symmetric equilibria and find, depending on the biophysical parameters involved in the problem, both stable and unstable regimes for tumor growth.
We consider the flow of gas through pipelines controlled by a compressorstation. Under a subsonic flow assumption we prove the existenceof classical solutions for a given finite time interval.The existence result is used to construct Riemannian feedback laws and to prove a stabilization result for a coupled system of gas pipes with a compressorstation. We introduce a Lyapunov function and prove exponential decay with respect to the L2-norm.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.