We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study tropical line arrangements associated to a three-regular graph $G$ that we refer to as tropical graph curves. Roughly speaking, the tropical graph curve associated to $G$, whose genus is $g$, is an arrangement of $2g-2$ lines in tropical projective space that contains $G$ (more precisely, the topological space associated to $G$) as a deformation retract. We show the existence of tropical graph curves when the underlying graph is a three-regular, three-vertex-connected planar graph. Our method involves explicitly constructing an arrangement of lines in projective space, i.e. a graph curve whose tropicalization yields the corresponding tropical graph curve and in this case, solves a topological version of the tropical lifting problem associated to canonically embedded graph curves. We also show that the set of tropical graph curves that we construct are connected via certain local operations. These local operations are inspired by Steinitz’ theorem in polytope theory.
Let L be an ample line bundle on a Kähler manifolds of nonpositive sectional curvature with K as the canonical line bundle. We give an estimate of m such that K+mL is very ample in terms of the injectivity radius. This implies that m can be chosen arbitrarily small once we go deep enough into a tower of covering of the manifold. The same argument gives an effective Kodaira Embedding Theorem for compact Kähler manifolds in terms of sectional curvature and the injectivity radius. In case of locally Hermitian symmetric space of noncompact type or if the sectional curvature is strictly negative, we prove that K itself is very ample on a large covering of the manifold.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.