We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter reviews how functions of genetic susceptibility factors can be validated, specifically using disrupted in schizophrenia 1 (DISC1) as an example. Studies at multiple levels, from protein chemistry, cell biology, animal study, to clinical work provide comprehensive understanding of the functions of susceptibility factors. Once genetic studies identify candidate susceptibility factors for the diseases, functions of such proteins can be tested in cells by modulating expression of the target molecules or by expressing their genetic variants. The chapter describes rodent models with manipulations for genetic susceptibility factors of mental illnesses in greater detail. A series of studies by Weinberger and associates has pioneered the possible correlation of brain dysfunction with genetic variations in susceptibility factors associated with mental illnesses. To identify mechanistic links from genetic factors to the phenotypes, especially those observed during brain development and maturation, a combination of human studies with animal experiments is expected.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.