Globally, glaciers are changing in response to climate warming, with those that terminate in water often undergoing the most rapid change. In Alaska and northwest Canada, proglacial lakes have grown in number and size but their influence on glacier mass loss is unclear. We characterized the rates of retreat and mass loss through frontal ablation of 55 lake-terminating glaciers (>14 000 km2) in the region using annual Landsat imagery from 1984 to 2021. We find a median retreat rate of 60 m a−1 (interquartile range = 35–89 m a−1) over 1984–2018 and a median loss of 0.04 Gt a−1 (0.01–0.15 Gt a−1) mass through frontal ablation over 2009–18. Summed over 2009–18, our study glaciers lost 6.1 Gt a−1 to frontal ablation. Analysis of bed profiles suggest that glaciers terminating in larger lakes and deeper water lose more mass to frontal ablation, and that the glaciers will remain lake-terminating for an average of 74 years (38–177 a). This work suggests that as more proglacial lakes form and as lakes become larger, enhanced frontal ablation could cause higher mass losses, which should be considered when projecting the future of lake-terminating glaciers.