We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An in-house self-held respiration monitoring device (SHRMD) was developed for providing deep inspiration breath hold (DIBH) radiotherapy. The use of SHRMD is evaluated in terms of reproducibility, stability and heart dose reduction.
Methods and materials:
Sixteen patients receiving radiotherapy of left breast cancer were planned for treatment with both a free breathing (FB) scan and a DIBH scan. Both FB and DIBH plans were generated for comparison of the heart, left anterior descending (LAD) artery and lung dose. All patients received their treatments with DIBH using SHRMD. Megavoltage cine images were acquired during treatments for evaluating the reproducibility and stability of treatment position using SHRMD.
Results:
Compared with FB plans, the maximum dose to the heart by DIBH technique with SHRMD was reduced by 29·9 ± 15·6%; and the maximum dose of the LAD artery was reduced by 41·6 ± 18·3%. The inter-fractional overall mean error was 0·01 cm and the intra-fractional overall mean error was 0·04 cm.
Conclusion:
This study demonstrated the potential benefits of using the SHRMD for DIBH to reduce the heart and LAD dose. The patients were able to perform stable and reproducible DIBHs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.