We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Increasing literature highlighted alterations of tryptophan (TRP) metabolism and kynurenine (KYN) pathway in children with autism spectrum disorder (ASD). However, no study specifically focused on adult samples. Meanwhile, several authors stressed the relevance of investigating neurobiological correlates of adult forms of ASD and of those subthreshold ASD manifestations frequently found in relatives of ASD probands, known as broad autism phenotype (BAP). This work aimed to evaluate circulating levels of TRP and metabolites of KYN pathway in a sample of ASD adults, their first-degree relatives and controls (CTLs), investigating also the correlations between biochemical variables’ levels and ASD symptoms.
Methods
A sample of ASD adults, together with a group of first-degree relatives (BAP group) and unrelated CTLs were assessed by means of psychometric scales. Circulating levels of TRP, KYN, quinolinic acid (QA), and kynurenic acid (KYNA) were assessed in all subjects.
Results
ASD patients reported significantly higher total scores than the other groups on all psychometric scales. BAP subjects scored significantly higher than CTLs. ASD patients reported significantly lower TRP levels than BAP and CTL groups. Moreover, significantly lower levels of KYNA were reported in both ASD and BAP groups than in CTLs. Specific patterns of associations were found between autism symptoms and biochemical variables.
Conclusions
Our findings confirm in adult samples the presence of altered TRP metabolism through KYN pathway. The intermediate alterations reported among relatives of ASD patients further stress the presence of a continuum between subthreshold and full-threshold ASD phenotypes also from a biochemical perspective.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.