We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To study coronary artery haemodynamics in adolescents with homozygous familial hypercholesterolaemia and aortic supravalvular stenosis.
Methods
Patients diagnosed with familial hypercholesterolaemia who were younger than 16 years and who had undergone transthoracic echocardiography from 2007 to 2010 were included in this study. We included patients with homozygous familial hypercholesterolaemia and aortic supravalvular stenosis and those with heterozygous familial hypercholesterolaemia. All patients underwent stress echocardiography, and left anterior descending coronary artery flow was successfully detected. Coronary flow velocity reserve was calculated as the ratio of hyperaemic mean diastolic flow velocity after injection of adenosine to basal mean diastolic flow velocity. Changes in coronary haemodynamics and the relationship between lipid concentrations were determined.
Results
A total of 11 patients with homozygous familial hypercholesterolaemia were enrolled in this study. Lipid concentrations were measured, and the mean coronary flow velocity reserve was 1.97 plus or minus 0.51. Seven children were included in the group of patients with heterozygous familial hypercholesterolaemia. In these children, the mean coronary flow velocity reserve was 3.08 plus or minus 0.84.
Conclusion
The coronary flow velocity reserve of homozygous familial hypercholesterolaemic patients is lower than that of heterozygous familial hypercholesterolaemic patients, and it is associated with a high concentration of low-density lipoprotein cholesterol. Aortic stenosis and plaques compromised the ostia of the coronary artery and caused increased basal mean diastolic coronary velocity with blunted increase in peak velocity, which decreased the coronary flow velocity reserve.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.