We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reaction time variability (RTV) has been estimated using Gaussian, ex-Gaussian, and diffusion model (DM) indices. Rarely have studies examined interrelationships among these performance indices in childhood, and the use of reaction time (RT) computational models has been slow to take hold in the developmental psychopathology literature. Here, we extend prior work in adults by examining the interrelationships among different model parameters in the ABCD sample and demonstrate how computational models of RT can clarify mechanisms of time-on-task effects and sex differences in RTs.
Method:
This study utilized trial-level data from the stop signal task from 8916 children (9–10 years old) to examine Gaussian, ex-Gaussian, and DM indicators of RTV. In addition to describing RTV patterns, we examined interrelations among these indicators, temporal patterns, and sex differences.
Results:
There was no one-to-one correspondence between DM and ex-Gaussian parameters. Nonetheless, drift rate was most strongly associated with standard deviation of RT and tau, while nondecisional processes were most strongly associated with RT, mu, and sigma. Performance worsened across time with changes driven primarily by decreasing drift rate. Boys were faster and less variable than girls, likely attributable to girls’ wide boundary separation.
Conclusions:
Intercorrelations among model parameters are similar in children as has been observed in adults. Computational approaches play a crucial role in understanding performance changes over time and can also clarify mechanisms of group differences. For example, standard RT models may incorrectly suggest slowed processing speed in girls that is actually attributable to other factors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.