Call a non-Moufang Bol loop minimally non-Moufang if every proper subloop is Moufang and minimally nonassociative if every proper subloop is associative. We prove that these concepts are the same for Bol loops which are nilpotent of class two and in which certain associators square to 1. In the process, we derive many commutator and associator identities which hold in such loops.