To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Approximate lattices of Euclidean spaces, also known as Meyer sets, are aperiodic subsets with fascinating properties. In general, approximate lattices are defined as approximate subgroups of locally compact groups that are discrete and have finite co-volume. A theorem of Lagarias [Meyer’s concept of quasicrystal and quasiregular sets. Comm. Math. Phys.179(2) (1996), 365–376] provides a criterion for discrete subsets of Euclidean spaces to be approximate lattices. It asserts that if a subset X of $\mathbb {R}^n$ is relatively dense and $X - X$ is uniformly discrete, then X is an approximate lattice. We prove two generalizations of Lagarias’ theorem: when the ambient group is amenable and when it is a higher-rank simple algebraic group over a characteristic $0$ local field. This is a natural counterpart to the recent structure results for approximate lattices in non-commutative locally compact groups. We also provide a reformulation in dynamical terms pertaining to return times of cross-sections. Our method relies on counting arguments involving the so-called periodization maps, ergodic theorems and a method of Tao regarding small doubling for finite subsets. In the case of simple algebraic groups over local fields, we moreover make use of deep superrigidity results due to Margulis and to Zimmer.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.