We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This research aimed to print realistically detailed and magnified three-dimensional models of the inner ear, specifically focusing on visualising its complex labyrinth structure and functioning simulation.
Methods
Temporal bone computed-tomography data were imported into Mimics software to construct an initial three-dimensional inner-ear model. Subsequently, the model was amplified and printed with precision using a three-dimensional printer. Five senior attending physicians evaluated the printed model using a Likert scale to gauge its morphological accuracy, clinical applicability and anatomical teaching value.
Results
The printed inner-ear model effectively demonstrated the intricate internal structure. All five physicians agreed that the model closely resembled the real inner ear in shape and structure, and simulated certain inner-ear functions. The model was considered highly valuable for understanding anatomical structure and disorders.
Conclusion
The three-dimensionally printed inner-ear model is highly simulated and provides a valuable visual tool for studying inner-ear anatomy and clinical teaching, benefiting otologists.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.