We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend our study of variability regions, Ali et al. [‘An application of Schur algorithm to variability regions of certain analytic functions–I’, Comput. Methods Funct. Theory, to appear] from convex domains to starlike domains. Let
$\mathcal {CV}(\Omega )$
be the class of analytic functions f in
${\mathbb D}$
with
$f(0)=f'(0)-1=0$
satisfying
$1+zf''(z)/f'(z) \in {\Omega }$
. As an application of the main result, we determine the variability region of
$\log f'(z_0)$
when f ranges over
$\mathcal {CV}(\Omega )$
. By choosing a particular
$\Omega $
, we obtain the precise variability regions of
$\log f'(z_0)$
for some well-known subclasses of analytic and univalent functions.
For functions in
$C^k(\mathbb {R})$
which commute with a translation, we prove a theorem on approximation by entire functions which commute with the same translation, with a requirement that the values of the entire function and its derivatives on a specified countable set belong to specified dense sets. Using this theorem, we show that if A and B are countable dense subsets of the unit circle
$T\subseteq \mathbb {C}$
with
$1\notin A$
,
$1\notin B$
, then there is an analytic function
$h\colon \mathbb {C}\setminus \{0\}\to \mathbb {C}$
that restricts to an order isomorphism of the arc
$T\setminus \{1\}$
onto itself and satisfies
$h(A)=B$
and
$h'(z)\not =0$
when
$z\in T$
. This answers a question of P. M. Gauthier.
Let $(z_k)$ be a sequence of distinct points in the unit disc $\mathbb {D}$ without limit points there. We are looking for a function $a(z)$ analytic in $\mathbb {D}$ and such that possesses a solution having zeros precisely at the points $z_k$, and the resulting function $a(z)$ has ‘minimal’ growth. We focus on the case of non-separated sequences $(z_k)$ in terms of the pseudohyperbolic distance when the coefficient $a(z)$ is of zero order, but $\sup _{z\in {\mathbb D}}(1-|z|)^p|a(z)| = + \infty$ for any $p > 0$. We established a new estimate for the maximum modulus of $a(z)$ in terms of the functions $n_z(t)=\sum \nolimits _{|z_k-z|\le t} 1$ and $N_z(r) = \int_0^r {{(n_z(t)-1)}^ + } /t{\rm d}t.$ The estimate is sharp in some sense. The main result relies on a new interpolation theorem.
This work focuses on the ongoing research of lineability (the search for large linear structures within certain non-linear sets) in non-Archimedean frameworks. Among several other results, we show that there exist large linear structures inside each of the following sets: (i) functions with a fixed closed subset of continuity, (ii) all continuous functions that are not Darboux continuous (or vice versa), (iii) all functions whose Dieudonné integral does not behave as an antiderivative, and (iv) functions with finite range and having antiderivative.
This is a short introduction to the theory of holomorphic functions in finitely and infinitely many variables. We begin with functions in finitely many variables, giving the definition of holomorphic function. Every such function has a monomial series expansion, where the coefficients are given by a Cauchy integral formula. Then we move to infinitely many variables, considering functions defined on B_{c0}, the open unit ball of the space of null sequences. Holomorphic functions are defined by means of Fréchet differentiability. We have versions of Weierstrass and Montel theorems in this setting. Every holomorphic function on B_{c0} defines a family of coefficients through a Cauchy integral formula and a (formal) monomial series expansion. Every bounded analytic (represented by a convergent power series) function is holomorphic. Hilbert’s criterion, that gives conditions on a family of scalars so that it is attached to a bounded holomorphic function on B_{c0}. Homogeneous polynomials are those entire functions having non-zero coefficients only for multi-indices of a given order. We show how these are related to multilinear forms on c0 through the polarization formulas.
In this paper we give some generalizations and improvements of the Pavlović result on the Holland–Walsh type characterization of the Bloch space of continuously differentiable (smooth) functions in the unit ball in ${{\text{R}}^{m}}$.
Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$ which are of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$. We determine sharp estimates for the Toeplitz determinants whose elements are the Taylor coefficients of functions in ${\mathcal{S}}$ and certain of its subclasses. We also discuss similar problems for typically real functions.
A class of two-dimensional birth-and-death processes, with applications in many modelling problems, is defined and analysed in the steady state. These are processes whose instantaneous transition rates are state-dependent in a restricted way. Generating functions for the steady-state distribution are obtained by solving a functional equation in two variables. That solution method lends itself readily to numerical implementation. Some aspects of the numerical solution are discussed, using a particular model as an example.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.