We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents backstepping control and backstepping constraint control approaches for a quadrotor unmanned aerial vehicle (UAV) control system. The proposed methods are applied to a Parrot Mambo drone model to control rotational motion along the $x$, $y$, and $z$ axes during hovering and trajectory tracking. In the backstepping control approach, each state of the system controls the previous state and is called “virtual control.” The last state is controlled by the real control input. The idea is to compute, in several steps, a control law that ensures the asymptotic stability of the system. The backstepping constraint control method, based on barrier Lyapunov functions (BLFs), is designed not only to track the desired trajectory but also to guarantee no violation of the position and angle constraints. Symmetric BLFs are introduced in the design of the controller. A nonlinear mathematical model is considered in this study. Based on Lyapunov stability theory, it can be concluded that the proposed controllers can guarantee the stability of the UAV system and the state converges asymptotically to the desired trajectory. To make the control robust, an adaptation law is applied to the backstepping control that estimates the unknown parameters and ensures their convergence to their respective values. Validation of the proposed controllers was performed by simulation on a flying UAV system.
Le contrôle des écoulements est à la base des travaux de développement en aérodynamique automobile. L'objectif à moyen terme est d'obtenir des systèmes de contrôle réactif où l'actionneur agit en fonction de l'état de l'écoulement. Ce type de contrôle implique la mise en place d'un actionneur, d'un capteur et d'une loi de commande les reliant l'un à l'autre. Cet article constitue un état de l'art sur les stratégies de commande envisageables. Il propose un classement théorique des différents schémas utilisés dans la littérature. Les commandes en boucles fermées sont plus particulièrement développées. Elles peuvent se décliner autour de 2 types de schémas : les boucles fermées simples où des mesures de l'écoulement prises en aval de l'actionneur sont utilisées dans la loi de commande ou des boucles fermées de type prédicteur/correcteur comme les schémas adaptatifs ou les schémas issus de la théorie du contrôle optimal. Pour chaque schéma de contrôle, les concepts mathématiques et algorithmiques sont évoqués et des résultats bibliographiques sont présentés. La pertinence de ces schémas pour le secteur automobile est ensuite discutée.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.