We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Despite the extensive knowledge of the characteristics of the coherent radio emission, the mechanism is not understood. The high-energy radiation is incoherent and may be related to the flux of relativistic electrons and positrons in a current sheet at the boundary of the magnetosphere. The radio emission from the polar cap is at lower frequency at larger radii, as the magnetic field lines diverge. The emission may be affected by propagation through the polar cap; refraction along the magnetic field lines may increase the apparent pulse width at lower frequencies.
This appendix provides mathematical details to supplement the ideas presented in the main text. Topic covered include: angular measurement, apparent diameter, trigonometry, finding the Sun’s altitude from the length of a shadow, determining the relative distances of the Sun and Moon, and finding the distance to an astronomical object using parallax measurements. In addition, this appendix shows how to calculate the sizes of epicycles in the Ptolemaic theory and the periods and sizes of planetary orbits in the Copernican theory. Mathematical details are also provided for Kepler’s Laws of Planetary Motion, Galileo’s measurement of mountains on the Moon, Galileo’s studies of falling bodies and projectiles, Newton’s universal gravitational force, and Bradley’s theory of the aberration of starlight.
A rare aberrant fruit phenotype was found in cacao (Theobroma cacao L.) in St Augustine, Trinidad. Double fructification instead of single fructification on a single pedicel was observed. The aberration probably occurred as a result of the formation of two pistils in a single flower. Fruits matured as normal, and fruit morphology and seed number were within the range of that reported for normal fruits of the accession observed in Trinidad. The plant is under investigation and the impact of this finding is highlighted.
A method for measurement of the aberration status from high-resolution dark-field images is developed using scanning transmission electron microscopy (STEM), called the Segmented Image Autocorrelation function Matrix (SIAM). The method employs an autocorrelation function from the segmented area in the defocused STEM images from an aligned crystalline specimen to measure the defocus and twofold astigmatism for the probe-forming system. The values measured using this method can be fed directly back to the instrument by changing the strength of the stigmator and the objective lens of the microscope. It is successfully demonstrated that the feedback system can automatically correct the defocus and twofold astigmatism of the microscope after several iterations using practical STEM images from an actual crystalline specimen.
The successful development of third-order aberration correctors in transmission electron microscopy has seen aberration-corrected electron microscopes evolve from specialist projects, custom built at a small number of sites to common instruments in many modern laboratories. Here we describe some initial results illustrating the two- and three-dimensional (3D) performance of an aberration-corrected scanning transmission electron microscope with a prototype improved aberration corrector designed to also minimize fifth-order aberrations and a new, higher brightness gun. We show that atomic columns separated by 0.63 Å can be resolved and demonstrate detection of single dopant atoms with 3D sensitivity.
Aberration correctors using hexapole fields have proven useful to
correct for the spherical aberration in electron microscopy. We
investigate the limits of the present design for the hexapole corrector
with respect to minimum probe size for the scanning transmission electron
microscope and discuss several ways in which the design could be improved
by rather small and incremental design changes for the next generation of
advanced probe-forming systems equipped with a gun monochromator.
This article presents my reminiscences of the work in Chicago on the
correction or reduction of lens aberrations. Studies began in the early
1960s and extended over a period of almost 40 years, although it was
never the primary focus of the work of the laboratory. The account is
almost entirely based on my own memory, which is not a very reliable
instrument. It is not intended to be a review and is more accurately
describable as a personal recollection.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.