We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note we give simple proofs of several results involving maximal truncated Calderón–Zygmund operators in the general setting of rearrangement-invariant quasi-Banach function spaces by sparse domination. Our techniques allow us to track the dependence of the constants in weighted norm inequalities; additionally, our results hold in ℝn as well as in many spaces of homogeneous type.
Mixed norm inequalities for directional operators are closely related to the boundedness problems of several important operators in harmonic analysis. In this paper we prove weighted inequalities for some one-dimensional one-sided maximal functions. Then by applying these results, we establish mixed norm inequalities for directional maximal operators which are defined from these one-dimensional maximal functions. We also estimate the constants in these inequalities.
We prove optimal radially weighted L2-norm inequalities for the Fourier extension operator associated to the unit sphere in ℝn. Such inequalities valid at all scales are well understood. The purpose of this short paper is to establish certain more delicate single-scale versions of these.
We present “reiteration theorems” with limiting values $\theta =0$ and $\theta =1$ for a real interpolation method involving broken-logarithmic functors. The resulting spaces lie outside of the original scale of spaces and to describe them new interpolation functors are introduced. For an ordered couple of (quasi-) Banach spaces similar results were presented without proofs by Doktorskii in $[\text{D}]$.
The good weights for the one-sided Hardy-Littlewood operators have been characterized by conditions . In this paper we introduce a new condition which is analogous to A∞. We show several characterizations of . For example, we prove that the class of weights is the union of classes. We also give a new characterization of weights. Finally, as an application of condition, we characterize the weights for one-sided fractional integrals and one-sided fractional maximal operators.
The purpose of this paper is to characterize the weight functions for which the Hardy operator , with non-decreasing function ƒ, is bounded between various weighted Lp-spaces for a wide range of indices. Our characterizations complement for the most part those of E. T. Sawyer [11] and V. D. Stepanov [15] for the Hardy operator of non-increasing function.
The nonnegative weight function pairs u, v for which the operator maps the nonnegative nonincreasing functions in LP(v) boundedly into weak Lq(u) are characterized. This result is used, in particular, both to generalize and to provide an alternate proof of certain strong type inequalities recently obtained by Ariño and Muckenhouptfor the Hardy averaging operator restricted to nonnegative nonincreasing functions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.