We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The paper proves transportation inequalities for probability measures on spheres for the Wasserstein metrics with respect to cost functions that are powers of the geodesic distance. Let $\mu$ be a probability measure on the sphere ${\bf S}^n$ of the form $d\mu =e^{-U(x)}{\rm d}x$ where ${\rm d}x$ is the rotation invariant probability measure, and $(n-1)I+{\hbox {Hess}}\,U\geq {\kappa _U}I$, where $\kappa _U>0$. Then any probability measure $\nu$ of finite relative entropy with respect to $\mu$ satisfies ${\hbox {Ent}}(\nu \mid \mu ) \geq (\kappa _U/2)W_2(\nu,\, \mu )^2$. The proof uses an explicit formula for the relative entropy which is also valid on connected and compact $C^\infty$ smooth Riemannian manifolds without boundary. A variation of this entropy formula gives the Lichnérowicz integral.
Equational logic has been a central theme in mathematical reasoning and in reasoning about programs. We introduce a quantitative analogue of equational reasoning that allows one to reason about approximate equality. The equality symbol is annotated with a real number that describes how far apart two terms can be. We develop the counterparts of standard results of equational logic, in particular, a completeness theorem. We define quantitative algebras and free quantitative algebras which yield monads on categories of metric spaces. We show that key examples of probability metrics, in particular, the Kantorovich metric and the Wasserstein p-metrics, arise from simple quantitative theories. Finally we develop a quantitative version of the theory of effects in programming languages.
We propose unbalanced versions of the quantum mechanical version of optimal mass transport that is based on the Lindblad equation describing open quantum systems. One of them is a natural interpolation framework between matrices and matrix-valued measures via a quantum mechanical formulation of Fisher-Rao information and the matricial Wasserstein distance, and the second is an interpolation between Wasserstein distance and Frobenius norm. We also give analogous results for the matrix-valued density measures, i.e., we add a spatial dependency on the density matrices. This might extend the applications of the framework to interpolating matrix-valued densities/images with unequal masses.
We study a Lagrangian numerical scheme for solution of a nonlinear drift diffusionequation on an interval. The discretization is based on the equation’s gradient flowstructure with respect to the Wasserstein distance. The scheme inherits various propertiesfrom the continuous flow, like entropy monotonicity, mass preservation, metric contractionand minimum/ maximum principles. As the main result, we give a proof of convergence in thelimit of vanishing mesh size under a CFL-type condition. We also present results fromnumerical experiments.
Both the porous medium equation and the system of isentropic Euler equations can be considered as steepest descents on suitable manifolds of probability measures in the framework of optimal transport theory. By discretizing these variational characterizations instead of the partial differential equations themselves, we obtain new schemes with remarkable stability properties. We show that they capture successfully the nonlinear features of the flows, such as shocks and rarefaction waves for the isentropic Euler equations. We also show how to design higher order methods for these problems in the optimal transport setting using backward differentiation formula (BDF) multi-step methods or diagonally implicit Runge-Kutta methods.
Most metrics between finite point measures currently used in the literature have the flaw that they do not treat differing total masses in an adequate manner for applications. This paper introduces a new metric d̅1 that combines positional differences of points under a closest match with the relative difference in total mass in a way that fixes this flaw. A comprehensive collection of theoretical results about d̅1 and its induced Wasserstein metric d̅2 for point process distributions are given, including examples of useful d̅1-Lipschitz continuous functions, d̅2 upper bounds for the Poisson process approximation, and d̅2 upper and lower bounds between distributions of point processes of independent and identically distributed points. Furthermore, we present a statistical test for multiple point pattern data that demonstrates the potential of d̅1 in applications.
We illustrate how some interesting new variational principles can beused for the numerical approximation of solutions to certain (possiblydegenerate) parabolic partial differential equations. One remarkablefeature of the algorithms presented here is that derivatives do notenter into the variational principles, so, for example, discontinuousapproximations may be used for approximating the heat equation. Wepresent formulae for computing a Wasserstein metric which entersinto the variational formulations.
In this paper we show that to each distance d defined on the finite state space S of a strongly ergodic Markov chain there corresponds a coefficient ρd of ergodicity based on the Wasserstein metric. For a class of stochastically monotone transition matrices P, the infimum over all such coefficients is given by the spectral radius of P – R, where R = limkPk and is attained. This result has a probabilistic interpretation of a control of the speed of convergence of by the metric d and is linked to the second eigenvalue of P.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.