We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bone conduction hearing implants are a well-established method of hearing rehabilitation in children and adults. This study aimed to review any changes in provision in England.
Methods
The total number of bone conduction hearing implantations performed was analysed from 2012 to 2021 utilising Hospital Episode Statistics data for England.
Results
The total number of procedures has increased by 58 per cent. One-stage bone conduction hearing implantations in adults accounts for the largest proportion of this increase (93 per cent of the total). The number performed in children has remained stable and accounts for 73 per cent (n = 433) of all two-stage procedures.
Conclusion
The data show that bone conduction hearing implant surgery is becoming increasingly popular, particularly in adults. This has correlated with the increase in availability, national recommendations and choice of devices.
This chapter investigates the literary response to the advent of a series of technologies that operated by “waves” and “rays” – among them, wireless telegraphy, radio, X-rays, and over-the-air television. By challenging clear divisions of private and public, internal and external, urban and rural, local and global, national and international, these technologies in turn challenged writers to reimagine the body and body politic in an increasingly postdualistic world. Janechek outlines a “vibratory narrative aesthetic” in the modernist novel – one that sought not to “allegorize or simulate electronic transmission, but rather [to] take advantage of the principles already energizing it.” “No longer beholden to the representation of reality,” Janechek writes, “the novel could conceivably foster direct sensory experience, becoming a connective technology in its own right.”
This chapter introduces the wide range of music bound up with the sublime in the Romantic period. This is a time often associated with the triumph of music – and especially ‘autonomous’ instrumental music – as the most sublime of the arts, and with a canon of overwhelming, ground-breaking, transgressive works by great (mostly German) composers. These associations are important, not least as a way of understanding the unease and sometimes controversy that has surrounded the musical sublime since the later twentieth century. Yet equally important to understanding the sublime in the Romantic period is to look beyond monumental instrumental compositions to see how smaller-scale genres and vocal music, alongside performers, listeners and other agents, shaped and contested the sublimity of music, sound and hearing, and left an indelible mark on the broader aesthetic category of the sublime itself.
As a heavy load is applied to the parallel manipulators, it causes inaccuracies while positioning the end-effector or unbalanced dynamic forces in the legs. Various load-balancing techniques overcome this. However, the disadvantage of most load-balancing mechanisms is that they add inertia to the assembly and decrease the speed of motion. This article studies a new load-balancing method (a passive damper mechanism). The passive balancing mechanism is proposed to negate the inertia effects while countering the static inaccuracies in the parallel mechanism. This is verified by the structural analysis of the mechanism. The impact of the damper element on the dynamics of the mechanism is unknown. Hence, a complete mathematical model for the balancing mechanism has been developed to study its impact on the dynamics of the entire structure. Laplace transformations characterize the system response. The inclusion of a passive damper in a 3-prismatic-prismatic-revolute-spherical system was examined and found to be stable and critically damped. Such a passive damper was envisaged to facilitate additional force transmission for the actuators, and the DC gain from the system response validates the torque support for the actuators.
Measurements of pressure on fixed structures are reviewed including the Helsinki and JOIA test programmes. The Molikpaq experience and the Hans Island programmes are described in some detail. Loads tend to be concentrated in small areas, as was the case for ship structures (the high-pressure zones). Size effect of ice pressure with regard to ice thickness is discussed; average pressures decrease with ice thickness. The medium scale field indentation programmes are described, covering the Pond Inlet, Rae Point, and Hobsons Choice Ice Island test series. Ice-induced vibrations are introduced; these were observed in the Molikpaq structure and in many indentation tests. The vibrations tended to occur at certain speed ranges, associated with ice crushing. Results of field tests on iceberg failure are also reviewed, in which supporting evidence for layer failure was obtained.
Characterisation of the effect of transport on the welfare of fowl requires common currency methods that can compare the effects of diverse stressors using the same unit of measure. Aversion of broiler chickens (42 ± 1 days old) to vibrational and thermal stressors was investigated in a continuous free-choice procedure. Each choice-chamber had four compartments, connected via a central zone, offering a thermal stressor (T: 40°C, relative humidity 21%), a vibrational stressor (V: 2 Hz, 1 ms−2), concurrent vibrational and thermal stressors (VT), or no applied stressors (N). In experiment 1, there were no significant effects of stressor on the latency to leave the compartments after initial introduction (n = 24). In experiment 2, 12 subjects were introduced individually to a chamber for 4 h during each of a control and two treatment sessions. The results indicated that chickens did not avoid vibration, but significantly avoided the thermal stressor overall (T and VT; P < 0.001). As no interactive effect of the stressors was observed, all avoidance of the combined stressors can be attributed to the effects of the thermal stressor alone. Further work is required to establish ways in which delayed stressors can be studied using behavioural methods before common currency methods can be practicable.
This study investigated the effect of olfactory substances on the heart rate and lying behaviour of pigs during transport simulation. Five treatments were tested through the application of each substance to pigs’ snouts with a paintbrush. These consisted of: 1) control treatment (wiping without product); 2) 2 ml of a synthetic, maternal-like pheromone; 3) 5 ml of a synthetic, maternal-like pheromone; 4) a commercial, non-relevant odour and 5) 2 ml of a placebo (solvent of the synthetic pheromone without active ingredients). In total, 90 pigs took part in this study and each treatment was tested on a group of three pigs with six replicates per treatment. Pigs were vibrated in the vertical direction in a transport simulator with a frequency of 8 Hz and an acceleration of 3 m s−2. Cardiac activity and lying behaviour during vibration were quantified. The effect of vibration was found to be statistically significant, ie causing an increase in heart rate and numbers of ventricular ectopic beats (VEB). Both 2 and 5 ml of synthetic pheromone were generally found to decrease the minimum, mean, and peak heart rate values in comparison with the other treatments (in particular the control and the non-relevant odour group) but only minimum heart rate reached statistical significance. However, the number of VEBs was highest for these two synthetic pheromone groups during vibration. No dose-dependent synthetic pheromone effects were found and there were no differences in the amount of time pigs spent lying. The use of olfactory substances may support pigs’ ability to cope with real transport conditions thereby improving their welfare.
Multiple benefits of freight rail activity have been shown for commercial agribusiness, yet the effects of freight rail-related noise and vibration on domestic livestock health and welfare has so far received little research attention. This scoping review examines peer-reviewed and grey literature addressing associations between freight rail noise, vibration and impacts on domestic livestock. Six databases (Scopus, Science Direct, SAGE, TRID, SPARK, ARRB) were searched for relevant literature published from 1980–2019. PRISMA search procedures were used to identify 28 publications relevant to domestic livestock, as well as noise or vibration impact of rail applicable to the freight rail context. Included publications addressed a range of livestock and related species, covering descriptive, review, and experimental findings on noise and vibration impacts. Five publications addressed vibration effects, and 23 addressed noise effects. Effects of noise and vibration on different species indicated that adverse effects vary depending on exposure intensity. The literature indicates that specific thresholds for noise and vibration exposure should be considered when managing freight rail impacts on commercial agribusiness involving avian and mammalian species. Freight rail noise and vibration likely exceeds thresholds for discomfort and harm for avian and mammalian species. Future research should consider case studies that specifically focus on integrating freight rail noise and vibration data to derive species-specific guides for animal health and welfare purposes.
This study focuses on vibration reduction for quadcopters and octocopters with elastic, two-bladed, fixed-speed, variable-pitch rotors through the use of relative rotor phasing. The study defines phase modes such as a pitch phase mode with relative phasing between the front and aft rotors, a roll phase mode with relative phasing between the left and right rotors, and a differential phase mode with relative phasing between the clockwise and counter-clockwise spinning rotors for both the quadcopter and the octocopter, as well as additional higher harmonic phase modes for the octocopter. Parametric studies on individual phase modes indicate that, for the quadcopter in forward flight, the pitch and roll phase modes can almost entirely eliminate the 2/rev vibratory forces (at the aircraft level), but the 2/rev vibratory moments cannot be minimised at the same time. By simultaneously using multiple phase modes, a Pareto front can be generated and a solution selected based on the relative emphasis on force or moment vibration reduction. For the octocopter, it was observed that individual higher harmonic modes (specifically the 2c or 2s modes) could almost entirely eliminate both the 2/rev vibratory forces and moments, simultaneously. Compared with vibration levels in forward flight that might, on average, be expected if the rotors were randomly phased, a 62% reduction of a composite vibration index can be achieved on a quadcopter, and complete elimination of vibration was achievable on an octocopter, with appropriate rotor phasing.
Colour is widely utilised as a visual coding system in visual search, but its application under vibration conditions (e.g., in various vehicles) has not been fully explored. This study was designed to examine the effect of colour combinations on performance of visual search tasks conducted in vibration conditions. Forty-eight university students participated in an experiment where they were required to identify target type and location under 24 colour combinations (half in negative polarity and half in positive polarity) and three vibration conditions (static, low, and high). The findings showed that vibration did not significantly affect performance, perceptions, or physiological aspects. Colour combination significantly affected response time, and the participants preferred colour combinations that had the potential to produce better performance. Colour combinations with negative polarity (e.g., yellow on black and white on black) are recommended for presenting search interfaces. These findings are of importance in human–computer interface designs for information display under vibration conditions.
Chapter 7 considers structural loading and response of horizontal-axis machines, with some theoretical background and illustrative measurements from different wind turbine types. The chapter begins with a recap of the dynamics of a single degree of freedom system, leading into a discussion of multi-DOF systems and modal analysis. The cyclic loads affecting a wind turbine structure are described, including wind shear, tower shadow, and rotationally sampled turbulence. The concepts of stochastic and deterministic loading are explained and the principle of aerodynamic damping illustrated. Qualitative descriptions are given of gyroscopic, centrifugal, and electromechanical loading. The phenomenon of blade edgewise stall vibration is explained, with discussion of mechanical damper solutions. The last part of the chapter draws on an early experimental campaign in which the dynamic loading on a full-scale wind turbine was measured and compared with the results of software simulation. Results from the same trials also demonstrate the difference in rotor thrust loading arising from positive and negative pitch control. The chapter concludes with a brief summary of fatigue prediction methods.
This paper investigates the generation of passive intermodulation (PIM) in coaxial connectors during vibration. A series of experiments were designed and the simulation model and method were proposed for understanding these phenomena. We found that PIM is mainly influenced by the contact stress and contact surface roughness during vibration. Thus, a power spectral density method is presented to identify the roughness parameter of contact surface based on the Weierstrass–Mandelbrot model, and the simulation model and method were verified by the relative experiments. Eventually, some suggestions for engineering application were provided.
Cable-driven parallel robots (CDPRs) possess a lot of advantages over conventional parallel manipulators and link-based robot manipulators in terms of acceleration due to their low inertia. This paper deals with under-constrained CDPRs, which manipulate the end-effector to carrying the payload by using a number of cables less than six, often used preferably owing to their simple structures. Since a smaller number of cables than six are used, the end-effector of CDPR has uncontrollable degrees of freedom and that causes swaying motion and oscillations. In this paper, a scheme to curb on the unwanted oscillation of the end-effector of the CDPR with three cables is proposed based on multimode input shaping. The precise dynamic model of the under-constrained CDPR is obtained to find natural frequencies, which depends on the position of the end-effector. The advantage of the proposed method is that it is practicable to generate the trajectories for vibration suppression based on multi-mode input-shaping scheme in spite of the complexity in the dynamics and the difficulty in computing the natural frequencies of the CDPR, which are required in any input-shaping scheme. To prove the effectiveness of the proposed method, computer simulations and experiments were carried out by using 3-D motion for CDPR with three cables.
This paper presents an analytical approach to analyze the vertical vibration of a simply supported beam subjected to pedestrian-induced loads. The loading time history of an individual footstep is simplified as a rectangular force pulse, and each identical footstep load acts at different locations along the beam depending on a step length. Although the loading model is very simple, it enables us to find analytical relations between the pacing parameters and the beam response. The results showed that the dependence of the pacing period, footstep contact duration, time delay of traveling between two pedestrians on the natural period of the beam as well as the step length can influence the dynamic response of the beam significantly.
Vibration behavior of adaptive laminated composite beams integrated with magnetorheological (MR) fluid layer has been investigated using layerwise displacement theory. In most of the existing studies on the adaptive laminated beams with MR fluids, shear strain across the thickness of magnetorheological (MR) layer has been assumed a constant value, resulting in a constant shear stress in MR layer. However, due to the high shear deformation pattern inside MR layer, this assumption is not adequate to accurately describe the shear strain and stress in MR fluid layer. In this work a modified layerwise theory is employed to develop a Finite Element Model (FEM) formulation to simulate the laminated beams integrated with MR fluids. In the present model, each layer is modeled based on First-order Shear Deformation Theory (FSDT). The inter-laminar stresses between face-layer and MR layer is estimated more precise so FEM results are more accurate. Standard test of ASTM E 756-98 was employed to develop an empirical relationship for the complex shear modulus of MR fluid. Numerical examples have been illustrated the effects of MR fluid layer on the vibration behavior of the laminated beam. An experimental setup has been (FSDT) fabricated for the verification of the results.
Variational principles are derived in order to facilitate the investigation of the vibrations and stability of single and double-walled carbon nanotubes conveying a fluid, from a linear time-dependent partial differential equation governing their displacements. The nonlocal elastic theory of Euler-Bernoulli beams takes small-scale effects into account. Hamilton’s principle is obtained for double-walled nano-tubes conveying a fluid. The natural and geometric boundary conditions identified are seen to be coupled and time-dependent due to nonlocal effects.
This article compares Rudolf von Laban's and Mary Wigman's practices and theories of gestural flow with Walter Benjamin's theory of gesture as interruption. For Laban and Wigman, gesture mirrors a vitalist understanding of life that is based on the rediscovery of transhistorical continuities between human and cosmic energy. Benjamin's Brechtian gestures address inscriptions and manipulations of bodies, which provide comment on the conditions of society by subjecting to critique the essentializing aspects of historical and vitalist flow. Addressing in particular forms of vibration as both enriching and destabilizing the gestural from its margins, my article explores how vibratory energy indicates a self-reflexive theory of media, but also a revolutionary charge, in Benjamin; how it engenders a politically ambivalent process of transmission between dancers and audience in Laban; and how it becomes an actual mode of movement in Wigman. The historical inquiry contributes to a genealogy of vibration in contemporary dance.
In the present study, an exact solution for free vibration analysis of piezoelectric nanobeams based on the nonlocal theory is obtained. The Euler beam model for a long and thin beam structure is employed, together with the electric potential satisfying the surface free charge condition for free vibration analysis. The governing equations and the boundary conditions are derived using Hamilton's principle. These equations are solved analytically for the vibration frequencies of beams with various end conditions. The model has been verified with the previously published works and found a good agreement with them. A detailed parametric study is conducted to discuss the influences of the nonlocal parameter, on the vibration characteristics of piezoelectric nanobeams. The exact vibration solutions should serve as benchmark results for verifying numerically obtained solutions based on other beam models and solution techniques.
Vehicle response is served as a reference to evaluate riding comfort of passengers and running safety of moving carriages for high speed trains. In analyzing the vehicle-bridge interaction (VBI) problems, two sets of coupled equations of motion for running vehicles and bridge need to be solved and the VBI system matrices must be updated and factorized at each time step in a time-history analysis. This paper proposed a quasi-VBI model to abridge the complicated computational process, in which the bridge is subjected to only moving static forces of the train loadings, and the moving vehicle over it is excited by the corresponding feedback bridge response. To examine the interacting degree of the vehicle with the bridge, a coupling evaluation index (CEI) is defined as a quantitative assessment of the VBI system. The numerical parametric studies reveal that (1) the mass ratio of vehicle to bridge is the most sensitive parameter affecting the bridge response; (2) increasing bridge damping can reduce the coupling degree of the VBI system at high speeds; (3) the present quasi-VBI model is an efficient and simple tool to predict the vehicle's response with enough accuracy based on engineering approximation.
In this paper the transverse vibration characteristics of piezoceramic circular plates with V-notches are investigated theoretically through use of the Ritz's method incorporated with the defined equivalent constants. The Ritz's method is employed with two sets of admissible displacement functions, algebraic-trigonometric polynomials and corner functions, to guarantee convergence sufficiently and represent the stress singularity, respectively. Moreover, the equivalent constants derived by comparing the characteristic equations of transverse vibration between isotropic and piezoceramic disks are applied to suspend the electrical field consideration regarding the piezoelectricity. With the aid of theoretical analysis, the non-dimensional frequency parameters of transverse vibration modes for completely free V-notching circular plates are exhibited; in addition, the frequency variations depending on various notch angles and depths are explored. Numerical calculations using the finite element method (FEM) are performed and the results are compared with the theoretical analysis. It is shown that the resonant frequencies predicted by theoretical analysis and calculated by FEM are in good agreement.