We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Strong unique continuation properties and a classification of the asymptotic profiles are established for the fractional powers of a Schrödinger operator with a Hardy-type potential, by means of an Almgren monotonicity formula combined with a blow-up analysis.
We consider the equation Δu = Vu in the half-space ${\open R}_ + ^d $, d ⩾ 2 where V has certain periodicity properties. In particular, we show that such equations cannot have non-trivial superexponentially decaying solutions. As an application this leads to a new proof for the absolute continuity of the spectrum of particular periodic Schrödinger operators. The equation Δu = Vu is studied as part of a broader class of elliptic evolution equations.
In this paper we prove a unique continuationresult for a cascade system of parabolic equations, in which the solution of the firstequation is (partially) used as a forcing term for the second equation. As aconsequence we prove the existence of ε-insensitizing controls for someparabolic equations when the control region and the observability region do not intersect.
This work is devoted to prove the exponential decay for the energyof solutions of the Korteweg-de Vries equation in a bounded intervalwith a localized damping term. Following the method in Menzala (2002)which combines energy estimates, multipliers and compactnessarguments the problem is reduced to prove the unique continuation ofweak solutions. In Menzala (2002) the case where solutions vanish on aneighborhood of both extremes of the bounded interval where equationholds was solved combining the smoothing results by T. Kato (1983)and earlier results on unique continuation of smooth solutions byJ.C. Saut and B. Scheurer (1987). In this article we address thegeneral case and prove the unique continuation property in twosteps. We first prove, using multiplier techniques, that solutionsvanishing on any subinterval are necessarily smooth. We then applythe existing results on unique continuation of smooth solutions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.