The paper presents a novel control method aimed at enhancing the trajectory tracking accuracy of two-link mechanical systems, particularly nonlinear systems that incorporate uncertainties such as time-varying parameters and external disturbances. Leveraging the Udwadia–Kalaba equation, the algorithm employs the desired system trajectory as a servo constraint. First, the system’s constraints to construct its dynamic equation and apply generalized constraints from the constraint equation to an unconstrained system. Second, we design a robust approximate constraint tracking controller for manipulator control and establish its stability using Lyapunov’s law. Finally, we numerically simulate and experimentally validate the controller on a collaborative platform using model-based design methods.