We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Determining the chemical composition of sub-micrometer rock-forming minerals is still a challenging task. The electron probe micro-analyzer (EPMA) is considered the most accurate analytical way to obtain chemical data on amorphous and crystalline materials. However, performing EPMA analyses on sub-micrometer-sized grains is uncertain not recommended as the risk of obtaining analyses contaminated from the surrounding phases. A transmission electron microscope (TEM) equipped with an energy dispersive X-ray spectrometer (EDS) provides a greater spatial resolution, making it possible to obtain trustworthy chemical information on sub-micrometer-sized material. In this work, we present a fast and cheap data-reduction protocol for TEM-EDS chemical analysis, where k-factors derived experimentally for each element of interest and absorption correction are implemented. The results are compared with those determined using standardless and non-corrected TEM-EDS protocols. The k-factor for oxygen plays a fundamental role and its value should be calculated from compounds similar to the phase of interest. For absorption correction, the contribution of hydrogen during structural formula recalculation is taken into account, like a lower net valence of oxygen. The robustness of this protocol was tested by performing TEM-EDS analyses on white mica grains from metapelites, belonging to the Internal Ligurian Units exposed in the Northern Apennines, the chemical composition of which is well constrained. Such a protocol has proven to provide high-quality results from both statistical and crystallo-chemical perspectives. Remarkably, the tested data-reduction protocol for TEM-EDS analysis provided chemical compositions consistent with the EPMA results previously obtained from the same samples.
In the past decade, interest has significantly increased regarding the medicinal and nutritional benefits of pomegranate (Punica granatum) peel. This study examined the effects of using pomegranate peel extract (PGE) alone and in combination with albendazole (ABZ) on ultrastructural and immunological changes in cystic echinococcosis in laboratory-infected mice. Results revealed that the smallest hydatid cyst size and weight (0.48 ± 0.47mm, 0.17 ± 0.18 gm) with the highest drug efficacy (56.2%) was detected in the PGE + ABZ group, which also exhibited marked histopathological improvement. Ultrastructural changes recorded by transmission electron microscopy including fragmentation of the nucleus, glycogen depletion, and multiple lysosomes in vacuolated cytoplasm were more often observed in PGE + ABZ group. IFN-γ levels were significantly increased in the group treated with ABZ, with a notable reduction following PGE treatment, whether administered alone or in combination with ABZ. Thus, PGE enhanced the therapeutic efficiency of ABZ, with improvement in histopathological and ultrastructural changes.
A new chemical, Peldri II, is evaluated as a compound for drying soft clay materials. Peldri II, a fluorocarbon (1,1-difluorotetrachloroethane), is a solid at room temperature and is a liquid above 25°C. Clay gels are embedded in Peldri II by immersing them in the liquid and allowing it to solidify. Once solidified, Peldri II will sublime, with or without vacuum, to a dry specimen, probably without introducing surface tension. Wyoming montmorillonite saturated in 10−3 M NaCl and 1 M CaCl2 solutions has been examined to compare preservation of its initial structure after Peldri II, critical point, and freeze drying techniques. Transmission electron microscopy of ultrathin sections, scanning electron microscopy, and mercury intrusion porosimetry techniques were used. No differences were detected between Peldri II and critical point drying methods. Peldri II appears to be a significant improvement as an alternative drying agent for clay materials in studies of their structural properties. It is also very convenient for drying large numbers of samples.
Double hydroxide solids precipitated homogeneously from three laboratory-synthesized aqueous solutions that simulated mildly contaminated surface or groundwater. Over a limited pH range, precipitates formed rapidly from dissolved ions, and more slowly by incorporating ions dissolving from other solids, including highly soluble aluminous solids. The precipitates were characterized by size and shape via transmission electron microscopy (TEM), by composition via inductively coupled plasma-mass spectrometry (ICP-MS) of mother solutions and analytical electron microscopy (AEM) of precipitates, and by structure via powder X-ray diffraction (XRD), TEM, and extended X-ray absorption fine structure (EXAFS) spectroscopy. They were identified as nanocrystalline cobalt hydrotalcite (CoHT) of the form [Co(II)1-xAl(III)x(OH)2]x+(An−x/n)·mH2O, with x = 0.17–0.25, A = CO32−, NO3−, or H3SiO4−n = anion charge and m undetermined. Complete solid solution may exist at the macroscopic level for the range of stoichiometrics reported, but clustering of Co atoms within hydroxide layers indicates a degree of immiscibility at the molecular scale. Composition evolved toward the Co-rich endmember with time for at least one precipitate. The small layer charge in the x = 0.17 precipitate caused anionic interlayers to be incomplete, producing interstratification of hydrotalcite and brucite-like layers. Solubility products estimated from solution measurements for the observed final CoHT stoichiometries suggest that CoHT is less soluble than the inactive forms of Co(OH)2 and CoCO3 near neutral pH. Low solubility and rapid formation suggest that CoHT solids may be important sinks for Co in contact with near neutral pH waters. Because hydrotalcite can incorporate a range of transition metals, precipitation of hydrotalcite may be similarly effective for removing other trace metals from natural waters.
Recent pedological evidence of the widespread distribution of beidellites in soils indicates the need for a greater knowledge of the effect of charge location on the microstructural organization of Na+ smectite in gels. After equilibration at a suction pressure of 3.2 kPa before and after desiccation, TEM observations showed large differences between a beidellite and both a low and high charge montmorillonite. Monolayers were rare; individual layers were instead organized in particles with larger interparticle distances. This has implication for theories relating swelling pressures to interlayer distances or surface areas and implies the need for a geometrical approach to the study of swelling in smectites. Location of isomorphous substitution in the tetrahedral sheet of smectites results in an increased lateral extension of overlapping layers. This was reflected in a greater capacity to rehydrate after desiccation. Increased number of layers in particles were found with increasing surface charge density. The geometric organization of the particles is critical to the understanding of the ability of Na+ smectite to hold water against an applied suction.
Transmission electron microscopy/analytical electron microscopy (TEM/AEM) were utilized to study pyrite and sphalerite inclusions in chlorite or mixed-layer chlorite-corrensite from an analcimized ash bed in the Etalian stage (Middle Triassic), South Otago, New Zealand. These sulfide inclusions occur as elongated crystals up to 1 × 15 µm in size, within lens-shaped voids between separated, deformed (001) layers of (primarily) chlorite and mixed-layer chlorite-corrensite grains of typical detrital shape or chlorite packets in chlorite-mica stacks (intergrowths of chlorite and phengite packets) up to 40 × 150 µm in size. Relict biotite layers within chlorite, mixed-layer chlorite-corrensite and berthierine have textures implying replacement of the former by the latter, whereas in other unaltered samples only fresh biotite was observed. Anatase occurs in otherwise Ti-free chlorite, whereas relict biotite contains significant Ti (0.3 moles per 22 oxygen atoms). No sulfide minerals have been found in fresh biotite and phengite.
Mass balance considerations indicate that S and Zn were introduced via pore fluids and that the Fe was provided by the decomposition of biotite to secondary phyllosilicates. The alteration of biotite and the reaction of biotite to form chlorite and pyrite is controlled by aH+/aK+ as well as oxidation of reduced S species or reduction of oxidized S species from solution. Simple calculations with the observed compositions of chlorite and biotite suggest that some of the Fe in biotite was actually removed in solution rather than precipitated in pyrite and chlorite. Similar textures are abundant in ferroan phyllosilicates elsewhere, implying that the mechanism may apply widely to precipitation of sulfides in phyllosilicates during early diagenesis of sediments.
IronIII for TiIV substitution in the structure of pedogenic and synthetic anatase of up to Fe/ (Ti+Fe) 0.1 mol/mol was indicated by an increase in unit cell size as measured by XRD line shifts. Mössbauer- and electron paramagnetic resonance spectra at both, 298 K and 4.2 K supported this by the presence of signals typical for octahedrally coordinated FeIII in a diamagnetic matrix. Charge compensation was achieved by structural OH, as indicated by FTIR bands at 3360 and 960 cm−1, which were absent in pure anatase and which disappeared on heating. The weight loss on heating amounted to ca. 0.5 mol H2O/mol Fe. At 600°C structural Fe was ejected, the unit cell size decreased to that of pure anatase, and pseudobrookite, Fe2TiO5, was formed.
Utilizing high-resolution transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and X-raydiffraction (XRD) techniques, we have studied the transition from shallower smectite-rich mudrocks to deeper illite-rich mudrocks in Pliocene-age turbidite sediments from the northern Gulf of Mexico (GOM). Our objective in this work was to better understand how the smectite-illite transition may affect the onset of geopressuring in GOM sediments. The samples studied were sidewall cores from an offshore Louisiana well. In previous studies of GOM sediments, the smectite-to-illite reaction has mainly been documented in considerably older, Miocene-age sediments.
The results of this study elucidate the reaction mechanisms entailed in the transformation of clays in this sediment from smectitic to illitic. We found that illite formed at the expense of smectite in 2 ways: 1) growth of preexisting discrete illite flakes, and 2) creation of new illite layers within mixed-layer illite-smectite. Also, illitization apparently proceeded via a dissolution/precipitation, Al-conserving reaction rather than a solid-state, layer-conserving reaction. Smectite illitization is commonly believed to require input of K from feldspar dissolution. Our XRD results found little correlation between decreases in K-feldsparand increases of illite. However, in 1 instance TEM/EDS analyses indicated the presence of high-charge smectite, which suggests that insufficient K was available for illitization. TEM images also show small packets of authigenic chlorite in illite-rich mudrock. This chlorite may act as a sink for Fe liberated upon smectite illitization.
Synthetic goethites studied by high-resolution thermogravimetry (HRTGA) show variability in surface characteristics and structural stability as a function of aging conditions. Goethites were synthesized at either pH 6 or 11, at temperatures of 40 or 70°C, and in the presence or absence of sorbed Mn or Pb. Data from HRTGA analysis revealed at least four distinct weight-loss events near goethite dehydroxylation that relate to 1) three events involving the evolution of water associated with surface Fe-O functional groups and 2) bulk dehydroxylation of goethite during transformation to hematite. The relative mass of evolved surface and bulk structural water was related to the predominant particle morphology as determined by transmission electron microscopy (TEM). Differentiation of surface and bulk decomposition reactions allowed the identification of bulk structural dehydroxylation. Goethite crystallin-ity, estimated by the bulk dehydroxylation temperature, appeared to depend on the kinetics of crystallization. This trend was most evident for systems aged at pH 11 and 40°C. Greater concentrations of coprecipitated Mn or Pb dramatically improved goethite crystallinity as indicated by higher dehydroxylation temperatures and smaller widths of the (110) Bragg reflection. Comparison of bulk dehydroxylation temperatures for these samples to other preparations suggests that structural defects predominated over the effects of particle size and Mn/Pb substitution in determining goethite thermal stability. A conceptual model is proposed to account for the disparate dehydroxylation profiles displayed by goethites of varying crystallinity.
The evolution of texture, structure and chemical composition of chloritic clays in coeval pairs of metabasites and metapelites of a prograde sequence from the Bükk Mountains has been investigated using electron microscopy techniques. Samples are from the Bükkium (innermost Western Carpathians, Hungary) that underwent Alpine metamorphism, ranging from late diagenesis to epizone for pelites and from prehnite-pumpellyite to greenschist facies for the metabasites.
Although bulk-rock compositions, textures and primary minerals are different, chlorite evolved at similar rates in coeval metabasites and metasediments, but along different paths. The principal similarities in the prograde sequence are a decrease in the percentage of interstratified material in both dioctahedral and trioctahedral phyllosilicates and increase in thicknesses of chlorite and illite crystallites. The principal difference is in the type of interstratification in chlorite, with berthierine in metapelites, and smectite (saponite) in metabasites, although smectitic mixed layers also occur in the former. The evolution of trioctahedral phyllosilicates is marked by a decrease in the number of mineral species with increasing grade, chlorite, sensu stricto, being the only trioctahedral mineral at higher grades. This is consistent with the trend in reaction progress where both metastable systems (metabasites and metapelites) tend toward the same end-member, thermodynamically stable chlorite, as well as texture (crystal size), and where all intermediate states are metastable, and determined by the Ostwald step rule.
This paper aims at characterizing the morphology, texture, and microstructure of three hydrated kaolin rich clays (f < 0.2 μm) from volcanic soils. These clays represent a weathering sequence in which CEC, halloysite content with respect to kaolinite, as well as smectite content in the halloysite-smectite mixed-layer clays decrease with increased weathering. The clay samples were made homoionic (K+ or Mg2+) and hydrated under a low suction pressure (3.2 kPa). After replacing water by a resin, ultrathin sections were cut and examined by TEM. Particle shape varies with increased weathering, as follows: spheroids → tubes → platelets. Higher aggregation and dispersion are observed by TEM after Mg2+ and K+ saturation, respectively, at two levels of the clay-water system organization: intraparticle and interparticle. The microstructure variations induced by the nature of the exchangeable cation become less pronounced with decreasing layer charge of the 2:1 layers. They are thus related here to the presence of smectite layers localized in the halloysite habitus, mostly at the particle periphery. These results show that small amounts of smectite largely affect the organization of clays rich in kaolins at a high water content, and that K+ behaves here as a dispersing ion.
The amount of Mn2+ adsorbed or removed from solution by birnessite is several times greater than its reported cation exchange capacity. Extractability of the sorbed Mn2+ decreases with aging. It is uncertain whether the sorbed Mn2+ is oxidized on the surface or incorporated into the structure of birnessite. Using X-ray powder diffractometry and transmission electron microscopy, a study was conducted to examine the mineralogical alteration of birnessite after treatment with various concentrations of MnSO4 and solution pH.
The sorbed Mn2+ was not directly oxidized and remained on the birnessite surface. The sorption of Mn2+ was followed by alteration of birnessite with the formation of new Mn minerals. The specific Mn minerals formed were governed by the pH of the reaction, and the rate of the transformation was determined by Mn2+ concentration and pH. Nsutite and ramsdellite were identified at pH 2.4, crypto-melane at pH 4, groutite at pH 6, and manganite at pH 8. Other Mn minerals formed at these and other pH levels could not be identified. As the concentration of Mn in the solution decreased, the time required to form new minerals from the birnessite increased. The newly formed phases were the result of structural conversion since dissolution of birnessite and reprecipitation of new phases were not observed.
Smectite was reacted at several temperatures between 200°C and 500°C to produce interstratified illite/smectite (I/S) with different proportions of expandable layers. Dispersed and sedimented products were examined using a transmission electron microscope. Particle size and aspect ratio showed no systematic change as a function of reaction extent during R0 illitization. However, particles exhibited rounded edges during the early stages of the reaction, suggesting some dissolution of primary smectite. Additionally, increasing particle contrast in the electron beam suggests thickening of particles with increasing reaction extent. The thickening of particles is thought to be produced by the nucleation and precipitation of secondary illite layers on primary smectite layers. In the most extensively reacted I/S, particles have become aggregated into clumps or quasicrystals by lateral growth of illite layers. Internal uniformity of crystallographic alignment of individual growing crystals within each aggregate was reflected in the increasing frequency of 60° and 120° interfacial angles within each aggregate. In highly illitic I/S, these aggregates took on an overall euhedral form and became crystallographically contiguous, producing single crystal electron diffraction patterns.
The illitic end of mixed-layer illite-smectite series (I/S) in shales from Lower Cretaceous Barra de Itiúba Formation, Sergipe-Alagoas basin, was examined with X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). A mathematical decomposition of XRD patterns shows different I/S and illite populations. All the samples contain ordered (R = 1) I/S, poorly crystallized illite (PCI) and well crystallized illite (WCI). A randomly interstratified (R = 0) I/S was also identified in a fractured zone at 1020 m. The percentage of expandable layers in ordered I/S decrease progressively from 20% to 10%. TEM observations show a continuous change in morphology between two basic particle shapes: elongated (lath) and isometric. The size and morphology of particles change with increasing depth. The proportion of laths decreases while isometric particles become predominant. However, both particle types continuously grow and enrich the larger size fraction. The growth process is driven by a mass transfer from the dissolving small particles of predominantly I/S (R = 1) composition to the larger (more illitic) lath and isometric ones. The proportion of lath-shaped particles decreases with depth indicating that the more stable population upon increased burial is the isometric well crystallized illite (WCI) particles. Very large laths are observed in the fault zone where conditions may favor faster growth processes.
The nature and morphology of Al(OH)3 polymorphs obtained by precipitating Al and tartrate at pH 12.0 and at a tartrate/Al molar ratio (R) of 0.1 were studied by X-ray diffraction, transmission electron microscopy and electron diffraction. Co-crystallization of unusually long (up to 18 µm) ‘stick-shaped’ gibbsite with platy particles of both nordstrandite, mainly, and bayerite was observed. Face-to-face associations of plates nucleated perpendicularly on the gibbsite surfaces parallel to the c axis produced peculiar elongated ‘brush’ -shaped particles. In a strongly alkaline environment the inhibiting effect of tartrate on Al(OH)3 polymorph formation is reduced and production of co-crystallized phases with structural crystallographic similarities can be observed.
Crystal-size distributions (CSDs) for clay minerals with depth were measured from the Salton Sea Geothermal Field (SSGF) as a test for the presence and meaning of theoretical crystal-size distributions in a natural system. The SSGF is a classic open hydrothermal system, and crystals are forming directly without apparent modification of early-formed crystals, over a wide range of temperature. Thus, the measured CSDs are the actual distributions for a single episode in which all crystals grew at the same time from solution at different temperatures and depths, rather than through modifications of shallower samples.
Some TEM images of ion-milled samples from a range of depths were used to measure the crystal thicknesses of illite, chlorite and biotite. Grain-size histograms flatten, broaden and shift to larger sizes with increasing depth. Values of α and β were calculated and used to verify that the measured distributions are log normal. Reduced grain-size distributions for illite in SSGF samples obey steady-state constraints.
The observations appear to be consistent with evolution of illite with increasing depth in the SSGF system by growth in an open system giving rise to log-normal distributions, followed by supply-controlled growth in an open system. Because crystals at different depths grew simultaneously under different temperature and fluid conditions as a function of depth, they do not represent different stages of a single evolving system. The relations imply that isochemical and isothermal systems which permit an evolving system to be sampled are rare or non-existent. The data for distributions for a given depth in the SSGF are consistent with growth in an open system. The collective relations therefore imply that caution should be used in interpreting conditions of crystal growth in natural systems even where CSDs give results which are necessary for, but not sufficient to prove, a given modeled mechanism.
Organotalcs, in which organic moieties are covalently bonded to Si atoms belonging to the tetrahedral sheets, are usually prepared by a sol-gel process starting from ethanolic solution of Mg nitrate, organo-alcoxysilanes, and aqueous sodium hydroxide solution. In this case, gypsum-like particles are obtained. In this work, evaporation-induced self-assembly within aerosols was used for the first time in order to prepare organotalc spheres. These hybrid lamellar materials can be used as environmental barriers, as polymer fillers, and as catalytic supports. Using octyltriethoxysilane as a source of Si, spherical particles with sizes ranging from 20 nm to 1 µm are obtained. X-ray diffraction and transmission electron microscopy images show that the d001 value equals 2.8 nm meaning that, in this case, organic moities are either alternatively distributed or identically tilted in the interlayer space. Compared to the classical synthesis at room temperature or in autoclaves, and besides being a continuous process, the reaction time is reduced to several minutes instead of hours. Homogeneous forms are obtained by aerosol whereas irregular shapes are obtained in the classical synthesis.
Three petrographically distinct styles of altered glasses in two hyaloclastites and one hyalotuff were studied. The texture and chemistry of these samples were investigated using electron probe microanalysis, scanning electron microscopy and transmission electron microscopy in order to understand better the mechanism by which alteration of sideromelane and formation of palagonite occurred in these samples. The results show that clay minerals (primarily smectites) are present in three different microenvironments: (1) coating the surfaces of glass and crystals or vesicle walls; (2) as a relatively heterogeneous, but well crystallized, replacement product (i.e. reddened smectite grain replacement or RSGR) of glass or; (3) as a relatively homogeneous, amorphous to poorly crystalline replacement product (i.e. palagonite). Both the grain size and composition of these smectite-like materials vary considerably.
Crystalline smectites occur in both hyaloclastites and have an intermediate composition between the two end-members nontronite and saponite. This composition could correspond to a mechanical intergrowth and/or an interstratification of two different smectites: one dioctahedral (i.e. nontronite) and one trioctahedral (i.e. saponite or stevensite) or simply to a true di-trioctahedral smectite. The coating smectite appears to have precipitated by a paragenetically-early, dissolution-precipitation mechanism prior to the formation of the RSGR. The high Ti content found in RSGR is attributable to an amorphous Ti-rich material which is intergrown with smectite and which behaves as a sink for immobile elements and those not included in smectite.
Palagonite from both hyaloclastites and hyalotuff is poorly to non-crystalline and more aluminous than the coating smectites. Palagonite from the hyalotuff has an Fe-rich montmorillonite-like composition. The TEM images show a 30–50 nm thick leached layer formed by selective (non-stoichiometric) dissolution that takes place in the fracture domain. The hydration and replacement of glass during the palgonitization process is accompanied by the loss of Fe, Mg and Ca with a concomitant gain of Al. Both palagonites (from hyaloclastites and hyalotuff) show smilar textural and chemical characteristics.