We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using data from the national micronutrients survey 2011–2012, the present study explored the status of subclinical vitamin A nutrition and the underlying determinants in the Bangladeshi population.
Design
A nationwide cross-sectional study.
Settings
The survey covered 150 clusters; fifty in each of rural, urban and slum strata.
Subjects
Three population groups: (i) pre-school age children (6–59 months; PSAC); (ii) school age children (6–14 years; SAC); and (iii) non-pregnant non-lactating women (15–49 years; NPNLW).
Results
National prevalence of subclinical vitamin A deficiency was 20·5, 20·8 and 5·3 % in PSAC, SAC and NPNLW, respectively. Slum populations had higher prevalence compared with urban (PSAC: 38·1 v. 21·2 %, P<0·001; SAC: 27·1 v. 22·1 %, P=0·004; NPNLW: 6·8 v. 4·7 %, P=0·01). Dietary vitamin A met up to 27·1–46·0 % of daily needs; plant-source vitamin A constituted 73–87 % of the intakes. Multivariable regression analyses showed that higher consumption of animal foods was associated with higher retinol status in PSAC (β=0·27; P<0·001); and living in urban area was related to higher retinol status in NPNLW (β=0·08, P=0·004) and PSAC (β=0·11, P=0·04). Increased intake of leafy vegetables was associated with lower retinol status in SAC (β=−0·08, P=0·02). Vitamin A supplementation in PSAC did not significantly influence serum retinol within one year post-supplementation (P>0·05 for differences in β between <3 months v. 3–6 months, 6–9 months and 9–12 months).
Conclusions
Prevalence of subclinical vitamin A deficiency was high in children in Bangladesh. Intakes of animal-source foods and leafy vegetables were associated with higher and lower retinol status, respectively. Increased food diversity through animal-source foods is required.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.